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Abstract

In the era of data-driven education, understanding how students learn has become essential for
improving teaching strategies and personalized learning experiences. Traditional learning analytics
often rely on black-box machine learning models that provide accurate predictions but fail to explain
why certain learning behaviors occur. This study explores the potential of Explainable Artificial
Intelligence (XAI) to uncover and interpret student learning patterns from large-scale educational
data. By integrating interpretable models such as SHAP, LIME, and decision trees within the
educational analytics framework, the research identifies the most influential features affecting
student performance, engagement, and learning outcomes. The findings demonstrate that XAl
techniques not only enhance transparency and trust in predictive models but also provide actionable
insights for educators to design adaptive interventions and support data-informed decision-making.
The proposed approach bridges the gap between algorithmic accuracy and pedagogical
understanding, offering a robust pathway toward human-centered, interpretable, and ethical
educational analytics.

Keywords: Explainable Al, Educational Analytics, Student Learning Behaviors, XAl Models,
Cognitive Skill Prediction, SHAP, LIME, Attention Networks.

Introduction

The field of educational analytics has witnessed a significant transformation with the integration
of artificial intelligence (Al) and machine learning (ML) techniques. These technologies have

provided institutions with the capability to analyze vast amounts of learning data to predict
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student performance, identify at-risk learners, and recommend personalized learning

interventions. However, most of these Al-based solutions have traditionally relied on complex,
opaque models often referred to as black-box systems. While these models can achieve high
levels of predictive accuracy, their lack of transparency raises concerns among educators,
policymakers, and learners. Without understanding the reasoning behind predictions,

stakeholders struggle to trust the outcomes or utilize them effectively for decision-making[1].

Explainable Artificial Intelligence (XAI) has emerged as a promising solution to bridge this gap
by enabling transparency, interpretability, and accountability in Al-driven systems. XAl provides
insights into how algorithms reach their predictions and decisions, making them comprehensible
to non-technical users such as educators[2]. In the context of educational analytics, explainability
becomes even more crucial because decisions directly influence students’ academic trajectories,
resource allocation, and learning strategies. For example, identifying why a student is predicted
to underperform can help instructors implement targeted interventions rather than applying

generalized solutions[3, 4].

This study focuses on demystifying student learning behaviors through the integration of XAl
techniques within predictive models used in educational analytics. Student learning behaviors are
multifaceted, encompassing cognitive engagement, interaction patterns with digital platforms,
participation in collaborative tasks, and self-regulated learning activities. By leveraging
explainable models, we can uncover the factors that most significantly contribute to performance

variations, thus creating opportunities for personalized and equitable education[5, 6].

The research employs a combination of traditional machine learning classifiers and modern
explainability tools, such as SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations), alongside attention-based deep learning models[7].
The objective is to provide not only accurate predictions but also human-understandable
explanations for these predictions. Real-world datasets from online learning management
systems (LMS) and digital classrooms were analyzed to validate the proposed framework. The
outcomes demonstrate how XAl enhances the interpretability of cognitive skill prediction while

maintaining performance levels comparable to black-box models[8, 9].

Page | 33 Journal of Data & Digital Innovation (JDDI)



ad
avad
aazaJ @ Journal of Data Pages: 32-38
[ /3 Digital Innovation
Volume-2, Issue-3 (2025)

Ultimately, this study aims to shift the paradigm from opaque predictions to transparent and

actionable insights in educational analytics. By decoding the underlying mechanisms of student
learning behaviors, educators can foster more inclusive and effective learning environments,
aligning with the broader goals of data-driven education and ethical Al adoption in academia[10,
11].

Explainable Al in Educational Analytics

Explainable Al serves as a crucial element in transforming how educational institutions utilize
learning analytics. Traditional analytics pipelines typically involve feature extraction from
students’ interactions with learning platforms, followed by training predictive models that
forecast academic performance, dropout likelihood, or knowledge mastery[12]. However, when
educators receive only the output—such as a risk score or predicted grade—without knowing
which features drove the decision, the actionable value of such predictions remains limited[13,
14].

XA techniques address this limitation by elucidating the inner workings of machine learning
algorithms. Among the most widely used techniques are SHAP and LIME. SHAP values
quantify the contribution of each input feature to a model’s output, allowing educators to
understand whether study time, assignment submission patterns, forum interactions, or quiz
attempts are the primary drivers of a particular prediction[15]. LIME, on the other hand, creates
interpretable local approximations of complex models, revealing the decision logic for individual
students rather than entire datasets. Such individualized insights are highly valuable in

educational settings where each learner’s pathway is unique[16, 17].

In addition to these post-hoc explanation methods, attention mechanisms within deep learning
architectures have gained traction in education-focused XAl research. Attention-based neural
networks dynamically highlight the most important elements within sequential learning data,
such as clickstream logs or temporal engagement metrics, thereby offering an intrinsic form of
interpretability. This is particularly relevant in environments where students’ learning behaviors

evolve over time[18, 19].
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The benefits of integrating XAl into educational analytics extend beyond interpretability. They

promote fairness by exposing potential biases within predictive systems, such as over-reliance on
demographic variables. They also foster trust among stakeholders, as educators and students
alike can scrutinize the reasoning behind algorithmic outputs[20]. For administrators and
policymakers, XAl can guide the formulation of evidence-based interventions and resource

allocation strategies, ultimately contributing to more effective learning ecosystems[6, 21, 22].

This section underscores that while predictive accuracy remains important, explainability has
emerged as an equally critical metric in the deployment of Al for education. By providing a
window into the decision-making process, XAl ensures that technological advancements are not

only powerful but also ethically aligned with educational values[14, 23].

Decoding Student Learning Behaviors with XAl

Student learning behavior is a complex construct influenced by cognitive, emotional, and
behavioral factors. Decoding these behaviors using explainable Al allows educators to move
from generalized interventions to precise, data-driven strategies tailored to individual
learners[24, 25]. In this study, learning behaviors were analyzed across multiple dimensions,
including engagement frequency, time-on-task, assessment performance, interaction with peers,
and adaptability to feedback. These variables were extracted from diverse educational datasets,
including online courses, blended learning environments, and traditional classrooms enhanced

with digital tracking systems[26, 27].

The application of SHAP values revealed several key patterns. For instance, timely submission
of assignments and consistent participation in formative assessments were found to be among the
strongest predictors of high academic achievement. Conversely, irregular login frequencies and
abrupt drops in engagement often signaled potential learning difficulties. LIME explanations
provided localized, student-specific interpretations, enabling educators to pinpoint the exact

factors leading to a prediction of risk or success[6, 28, 29].

Attention-based deep learning models further enriched the analysis by dynamically identifying

how students’ behaviors changed over time. For example, a student initially disengaged might
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show improved performance after receiving targeted feedback, a transition captured effectively

by the attention weights. This temporal interpretability is particularly valuable for designing

adaptive learning interventions that evolve with students’ needs[30, 31].

Moreover, the insights derived from explainable models can be fed back into instructional design
processes. Educators can restructure course materials to emphasize high-impact behaviors, while
learning platforms can integrate adaptive triggers, such as personalized reminders or
supplementary resources, based on explainable risk predictions[32, 33].

By demystifying the learning process, XAl transforms raw educational data into actionable
intelligence. It empowers teachers to become proactive facilitators rather than reactive observers
and promotes a culture of transparency in data-driven education. Importantly, the study also
highlights the ethical dimension of explainable learning analytics—students are more likely to

accept algorithmic recommendations when they understand the rationale behind them[34, 35].

Conclusion

This research demonstrates that explainable Al provides a powerful lens for understanding and
enhancing student learning behaviors in educational analytics. By combining post-hoc
explanation techniques such as SHAP and LIME with inherently interpretable models like
attention-based networks, the study bridges the gap between predictive power and actionable
insights. The findings confirm that XAl not only predicts student performance effectively but
also reveals the factors shaping these outcomes, enabling educators to design personalized, fair,
and transparent learning interventions. Moving forward, integrating explainability as a standard
practice in educational Al systems can transform opaque data pipelines into meaningful tools for

improving teaching and learning processes.
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