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Abstract 

 
In the era of data-driven education, understanding how students learn has become essential for 

improving teaching strategies and personalized learning experiences. Traditional learning analytics 

often rely on black-box machine learning models that provide accurate predictions but fail to explain 

why certain learning behaviors occur. This study explores the potential of Explainable Artificial 

Intelligence (XAI) to uncover and interpret student learning patterns from large-scale educational 

data. By integrating interpretable models such as SHAP, LIME, and decision trees within the 

educational analytics framework, the research identifies the most influential features affecting 

student performance, engagement, and learning outcomes. The findings demonstrate that XAI 

techniques not only enhance transparency and trust in predictive models but also provide actionable 

insights for educators to design adaptive interventions and support data-informed decision-making. 

The proposed approach bridges the gap between algorithmic accuracy and pedagogical 

understanding, offering a robust pathway toward human-centered, interpretable, and ethical 

educational analytics. 
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Introduction 

 
The field of educational analytics has witnessed a significant transformation with the integration 

of artificial intelligence (AI) and machine learning (ML) techniques. These technologies have 

provided institutions with the capability to analyze vast amounts of learning data to predict 
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student performance, identify at-risk learners, and recommend personalized learning 

interventions. However, most of these AI-based solutions have traditionally relied on complex, 

opaque models often referred to as black-box systems. While these models can achieve high 

levels of predictive accuracy, their lack of transparency raises concerns among educators, 

policymakers, and learners. Without understanding the reasoning behind predictions, 

stakeholders struggle to trust the outcomes or utilize them effectively for decision-making[1]. 

Explainable Artificial Intelligence (XAI) has emerged as a promising solution to bridge this gap 

by enabling transparency, interpretability, and accountability in AI-driven systems. XAI provides 

insights into how algorithms reach their predictions and decisions, making them comprehensible 

to non-technical users such as educators[2]. In the context of educational analytics, explainability 

becomes even more crucial because decisions directly influence students’ academic trajectories, 

resource allocation, and learning strategies. For example, identifying why a student is predicted 

to underperform can help instructors implement targeted interventions rather than applying 

generalized solutions[3, 4]. 

 

This study focuses on demystifying student learning behaviors through the integration of XAI 

techniques within predictive models used in educational analytics. Student learning behaviors are 

multifaceted, encompassing cognitive engagement, interaction patterns with digital platforms, 

participation in collaborative tasks, and self-regulated learning activities. By leveraging 

explainable models, we can uncover the factors that most significantly contribute to performance 

variations, thus creating opportunities for personalized and equitable education[5, 6]. 

 

The research employs a combination of traditional machine learning classifiers and modern 

explainability tools, such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations), alongside attention-based deep learning models[7]. 

The objective is to provide not only accurate predictions but also human-understandable 

explanations for these predictions. Real-world datasets from online learning management 

systems (LMS) and digital classrooms were analyzed to validate the proposed framework. The 

outcomes demonstrate how XAI enhances the interpretability of cognitive skill prediction while 

maintaining performance levels comparable to black-box models[8, 9]. 
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Ultimately, this study aims to shift the paradigm from opaque predictions to transparent and 

actionable insights in educational analytics. By decoding the underlying mechanisms of student 

learning behaviors, educators can foster more inclusive and effective learning environments, 

aligning with the broader goals of data-driven education and ethical AI adoption in academia[10, 

11]. 

Explainable AI in Educational Analytics 

 
Explainable AI serves as a crucial element in transforming how educational institutions utilize 

learning analytics. Traditional analytics pipelines typically involve feature extraction from 

students’ interactions with learning platforms, followed by training predictive models that 

forecast academic performance, dropout likelihood, or knowledge mastery[12]. However, when 

educators receive only the output—such as a risk score or predicted grade—without knowing 

which features drove the decision, the actionable value of such predictions remains limited[13, 

14]. 

 

XAI techniques address this limitation by elucidating the inner workings of machine learning 

algorithms. Among the most widely used techniques are SHAP and LIME. SHAP values 

quantify the contribution of each input feature to a model’s output, allowing educators to 

understand whether study time, assignment submission patterns, forum interactions, or quiz 

attempts are the primary drivers of a particular prediction[15]. LIME, on the other hand, creates 

interpretable local approximations of complex models, revealing the decision logic for individual 

students rather than entire datasets. Such individualized insights are highly valuable in 

educational settings where each learner’s pathway is unique[16, 17]. 

 

In addition to these post-hoc explanation methods, attention mechanisms within deep learning 

architectures have gained traction in education-focused XAI research. Attention-based neural 

networks dynamically highlight the most important elements within sequential learning data, 

such as clickstream logs or temporal engagement metrics, thereby offering an intrinsic form of 

interpretability. This is particularly relevant in environments where students’ learning behaviors 

evolve over time[18, 19]. 
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The benefits of integrating XAI into educational analytics extend beyond interpretability. They 

promote fairness by exposing potential biases within predictive systems, such as over-reliance on 

demographic variables. They also foster trust among stakeholders, as educators and students 

alike can scrutinize the reasoning behind algorithmic outputs[20]. For administrators and 

policymakers, XAI can guide the formulation of evidence-based interventions and resource 

allocation strategies, ultimately contributing to more effective learning ecosystems[6, 21, 22]. 

This section underscores that while predictive accuracy remains important, explainability has 

emerged as an equally critical metric in the deployment of AI for education. By providing a 

window into the decision-making process, XAI ensures that technological advancements are not 

only powerful but also ethically aligned with educational values[14, 23]. 

 

Decoding Student Learning Behaviors with XAI 

 
Student learning behavior is a complex construct influenced by cognitive, emotional, and 

behavioral factors. Decoding these behaviors using explainable AI allows educators to move 

from generalized interventions to precise, data-driven strategies tailored to individual 

learners[24, 25]. In this study, learning behaviors were analyzed across multiple dimensions, 

including engagement frequency, time-on-task, assessment performance, interaction with peers, 

and adaptability to feedback. These variables were extracted from diverse educational datasets, 

including online courses, blended learning environments, and traditional classrooms enhanced 

with digital tracking systems[26, 27]. 

 

The application of SHAP values revealed several key patterns. For instance, timely submission 

of assignments and consistent participation in formative assessments were found to be among the 

strongest predictors of high academic achievement. Conversely, irregular login frequencies and 

abrupt drops in engagement often signaled potential learning difficulties. LIME explanations 

provided localized, student-specific interpretations, enabling educators to pinpoint the exact 

factors leading to a prediction of risk or success[6, 28, 29]. 

 

Attention-based deep learning models further enriched the analysis by dynamically identifying 

how students’ behaviors changed over time. For example, a student initially disengaged might 
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show improved performance after receiving targeted feedback, a transition captured effectively 

by the attention weights. This temporal interpretability is particularly valuable for designing 

adaptive learning interventions that evolve with students’ needs[30, 31]. 

Moreover, the insights derived from explainable models can be fed back into instructional design 

processes. Educators can restructure course materials to emphasize high-impact behaviors, while 

learning platforms can integrate adaptive triggers, such as personalized reminders or 

supplementary resources, based on explainable risk predictions[32, 33]. 

 

By demystifying the learning process, XAI transforms raw educational data into actionable 

intelligence. It empowers teachers to become proactive facilitators rather than reactive observers 

and promotes a culture of transparency in data-driven education. Importantly, the study also 

highlights the ethical dimension of explainable learning analytics—students are more likely to 

accept algorithmic recommendations when they understand the rationale behind them[34, 35]. 

 

Conclusion 

 
This research demonstrates that explainable AI provides a powerful lens for understanding and 

enhancing student learning behaviors in educational analytics. By combining post-hoc 

explanation techniques such as SHAP and LIME with inherently interpretable models like 

attention-based networks, the study bridges the gap between predictive power and actionable 

insights. The findings confirm that XAI not only predicts student performance effectively but 

also reveals the factors shaping these outcomes, enabling educators to design personalized, fair, 

and transparent learning interventions. Moving forward, integrating explainability as a standard 

practice in educational AI systems can transform opaque data pipelines into meaningful tools for 

improving teaching and learning processes. 
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