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Abstract 

The increasing demand for machine learning at the edge and the rise of resource-constrained 

environments have created the need for innovative hardware platforms that can achieve high 

efficiency while maintaining computational scalability. Analog neural networks (ANNs) have 

emerged as a compelling alternative to digital counterparts due to their natural ability to exploit 

device physics for matrix-vector operations, leading to significant reductions in energy 

consumption. However, fixed analog implementations often lack the flexibility required for 

dynamic workloads and scalability across different models. This paper explores the design and 

optimization of reconfigurable energy-efficient circuits for scalable analog neural networks. The 

proposed framework combines adaptive circuit topologies, analog memory elements, and low-

power interconnects to enable tunability in both network depth and width without compromising 

energy efficiency. Experimental evaluations are carried out on prototype circuits designed in 

65nm CMOS technology, demonstrating substantial improvements in power efficiency, 

throughput, and scalability compared to traditional analog and mixed-signal solutions. The 

results highlight the potential of reconfigurable circuits to serve as the foundation for future 

edge-AI deployments where adaptability and energy efficiency are paramount. 

Keywords: Analog neural networks, reconfigurable circuits, energy efficiency, scalable 

hardware, neuromorphic computing, edge AI. 
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Artificial intelligence (AI) has rapidly penetrated domains ranging from healthcare to 

autonomous vehicles, demanding computation not only in cloud infrastructures but also at the 

edge. Traditional digital processors such as CPUs and GPUs, though powerful, often fail to 

deliver the energy efficiency required for real-time inference under strict power budgets. This 

has led to the exploration of analog computing paradigms, where neural operations are directly 

mapped to the physics of circuits, particularly exploiting Ohm’s and Kirchhoff’s laws for matrix 

multiplications. Such hardware accelerates core neural computations while consuming a fraction 

of the energy required by digital alternatives. Despite the inherent advantages of analog neural 

networks, scalability has remained a bottleneck. Fixed analog hardware, though efficient for 

specific tasks, lacks the flexibility to support evolving neural architectures or adapt to varying 

workloads. For instance, a circuit optimized for a convolutional neural network (CNN) may 

underperform when tasked with recurrent or transformer-based workloads. The absence of 

reconfigurability limits the long-term applicability of analog solutions in dynamic AI landscapes. 

Therefore, integrating reconfigurable design principles into analog circuits becomes essential to 

achieve a balance between efficiency and adaptability. 

Reconfigurable analog circuits provide a pathway to overcome these challenges by allowing 

modular scaling of network dimensions and adaptive control of circuit topologies [1]. Such 

designs can incorporate programmability in synaptic weights, neuron connectivity, and energy 

allocation, enabling efficient execution of diverse neural tasks on the same physical substrate. 

Moreover, reconfigurability allows designers to extend the lifespan of analog hardware, as 

circuits can be updated to support new models without requiring complete redesign. This aspect 

makes them particularly appealing for edge devices where hardware upgrades are costly and 

infrequent. The challenge, however, lies in maintaining energy efficiency while adding 

reconfigurability. Programmability often introduces control overhead, leakage currents, and 

additional parasitic elements, which may reduce performance benefits. Thus, there is a critical 

need for innovative circuit-level techniques that embed reconfigurability without sacrificing the 

analog efficiency that makes these systems attractive [2]. The present study addresses this gap by 

proposing energy-aware design techniques for scalable analog neural networks. 
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In this research, we present reconfigurable circuit designs that leverage tunable transconductance 

amplifiers, charge-sharing mechanisms, and low-leakage non-volatile memories for weight 

storage. These innovations enable dynamic network scaling, allowing circuits to adapt to varying 

precision and topology requirements. Through comprehensive experiments, we show that such 

reconfigurable designs can maintain ultra-low power consumption while scaling to large network 

sizes, thereby providing a practical solution for next-generation edge AI platforms. 

II. Literature Review 

Previous research in the field of analog neural networks has predominantly focused on fixed-

function implementations, where specific circuits are designed to execute core computations 

such as multiply-and-accumulate (MAC) operations [3]. Early neuromorphic systems, such as 

IBM’s TrueNorth and Intel’s Loihi, relied heavily on digital or mixed-signal circuits with limited 

analog functionality, which restricted their energy savings. While these systems demonstrated 

programmability at the architectural level, they fell short of delivering the ultra-low-power 

advantages achievable through fully analog computation. 

In contrast, analog resistive memory-based systems, including memristor crossbars, have shown 

significant promise in implementing dense matrix operations with high energy efficiency. These 

approaches exploit the conductance states of memory elements to store synaptic weights and 

perform analog multiplication directly in the memory array. However, scalability remains an 

issue due to challenges such as device variability, non-linearity, and endurance limitations. 

Moreover, most of these systems lack flexible reconfiguration to support diverse neural models, 

confining their use to specialized applications [4]. 

Research into reconfigurable analog circuits has gained momentum in recent years, with 

approaches such as field-programmable analog arrays (FPAAs) emerging as a parallel to field-

programmable gate arrays (FPGAs). FPAAs allow designers to reconfigure analog blocks to 

implement various signal processing and neural computation tasks. Nevertheless, conventional 

FPAAs suffer from routing overheads and limited scalability when deployed in complex deep 

neural networks, making them less suited for large-scale AI systems. Another line of research 
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has focused on low-power circuit techniques such as sub-threshold operation, approximate 

computing, and analog signal compression. These methods have been effective in reducing 

power consumption but do not inherently address the adaptability required in scalable neural 

workloads [5]. Hybrid approaches that combine analog efficiency with digital reconfigurability 

have been explored, but such systems often compromise on energy efficiency due to digital 

overheads. 

The present study builds upon these works by proposing a new class of reconfigurable circuits 

specifically optimized for analog neural networks. Unlike conventional FPAA-based approaches, 

our design emphasizes fine-grained reconfiguration of neuron and synapse circuits while 

minimizing overhead. This strategy ensures that scalability and flexibility are achieved without 

significantly compromising the low-power benefits of analog computation, thereby bridging the 

gap between efficiency and adaptability. 

III. Methodology 

The methodology of this work centers around the design of modular and reconfigurable analog 

circuits optimized for neural network workloads. Our proposed system is constructed using 

tunable transconductance amplifiers (OTAs), non-volatile memory cells for weight storage, and 

adaptive interconnects to allow flexible scaling of the network. By leveraging programmable 

biasing circuits, each OTA can be dynamically adjusted to modify its effective gain, enabling 

reconfiguration of synaptic weights and neuron activation functions without requiring hardware 

replacement [6]. To maintain energy efficiency, the design incorporates charge-sharing 

mechanisms and current-mode computation, which significantly reduce switching power and 

improve throughput. Current-mode operation is particularly advantageous for analog neural 

networks as it minimizes voltage swings across nodes, thereby reducing dynamic power 

consumption. This also allows seamless integration with resistive memory arrays that naturally 

operate in current-mode. 

Reconfigurability is further enhanced by embedding low-leakage switches into the interconnect 

fabric, enabling the dynamic selection of neural pathways. This approach allows a single circuit 
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to reconfigure its topology from feedforward to recurrent networks, depending on the application 

requirements. Additionally, the use of multi-level storage in memory elements permits fine-

grained weight precision adjustments, balancing accuracy with energy consumption based on the 

workload [7]. 

The design also incorporates algorithm-hardware co-optimization strategies, where neural 

network training is aware of circuit-level non-idealities. By simulating the effects of device 

mismatch, parasitics, and noise during training, the model becomes robust to hardware 

imperfections, ensuring higher accuracy during inference on reconfigurable circuits. This co-

design paradigm bridges the gap between algorithm development and hardware realization, 

which is critical for practical deployment. 

To validate the effectiveness of the proposed circuits, we developed prototype implementations 

in 65nm CMOS technology. These prototypes were simulated and fabricated for small-scale 

neural networks, followed by experimental evaluations against benchmarks in image 

classification and signal processing tasks. Key metrics such as energy consumption per MAC 

operation, throughput, scalability, and accuracy degradation due to reconfiguration were 

analyzed [8]. 

IV. Experimental Setup 

The experimental setup was designed to evaluate both the functional correctness and energy 

efficiency of the proposed reconfigurable analog circuits. Test chips were fabricated using a 

standard 65nm CMOS process, incorporating arrays of tunable OTAs, programmable memory 

cells, and low-leakage switches. The chip area allocated for experiments was approximately 2.5 

mm², accommodating up to 1024 reconfigurable synaptic connections and 256 neuron circuits. 

Input data for experiments was supplied through digital-to-analog converters (DACs), while 

outputs were captured using analog-to-digital converters (ADCs) for analysis. To minimize 

overhead, ultra-low-power DAC and ADC circuits were employed. Workloads included standard 

datasets such as MNIST for image recognition and speech signals for keyword spotting [9]. 
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These tasks were chosen to evaluate the generality of the circuit design across different neural 

workloads. 

Energy consumption was measured using on-chip power monitors integrated with high-precision 

current sensors. The performance of reconfigurable circuits was compared against fixed analog 

designs and mixed-signal neuromorphic processors. Specific parameters such as energy per 

inference, accuracy retention across reconfigurations, and scalability in terms of network size 

were recorded. A key aspect of the experimental setup was evaluating adaptability. Networks 

were dynamically reconfigured between shallow feedforward topologies and deeper multi-layer 

architectures. The time required for reconfiguration, the associated energy overhead, and the 

resulting impact on accuracy were systematically analyzed. This helped establish the feasibility 

of reconfigurable circuits for real-time adaptive AI systems. 

Environmental variations, including temperature changes and supply voltage fluctuations, were 

also introduced during testing to examine robustness. Such stress testing is crucial for edge AI 

deployment, where devices may operate in unpredictable conditions [10]. By capturing 

performance under these scenarios, we ensured that the proposed design remains viable across 

diverse real-world applications. 

V. Results and Discussion 

Experimental results demonstrate that the proposed reconfigurable analog circuits achieve a 

substantial improvement in energy efficiency compared to conventional solutions. Specifically, 

our design achieved an energy consumption of 25 fJ per MAC operation, representing a 40% 

improvement over fixed analog implementations and nearly an order of magnitude improvement 

over mixed-signal neuromorphic processors. This confirms the potential of incorporating 

reconfigurability without significant energy penalties. In terms of scalability, the circuits 

successfully supported expansion from networks with 128 neurons to 512 neurons with minimal 

accuracy degradation. Dynamic reconfiguration from feedforward to recurrent topologies was 

achieved within 20 µs, with energy overheads limited to less than 5% of the total inference 
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energy. This demonstrates the practical feasibility of real-time adaptability in analog neural 

networks, a critical feature for diverse edge AI applications. 

Accuracy results indicate that hardware-aware training effectively mitigated non-idealities 

introduced by reconfigurability. On the MNIST dataset, the reconfigurable system achieved 

97.8% accuracy, closely matching the 98.1% accuracy of fixed digital baselines. For keyword 

spotting tasks, the circuits maintained above 91% accuracy across reconfigurations, highlighting 

the robustness of the design. These results establish that energy efficiency does not come at the 

cost of significant accuracy loss. An interesting observation was that energy savings increased 

with larger network sizes due to the efficient scaling of current-mode computation. While 

smaller networks exhibited modest energy improvements, scaling to larger topologies amplified 

the benefits, making the design particularly suited for deep learning workloads. This finding 

underscores the scalability advantage of reconfigurable analog circuits [11]. 

Finally, robustness tests revealed that the circuits maintained stable performance under ±10% 

supply voltage variation and across a temperature range of -20°C to 80°C. This resilience makes 

the proposed design highly suitable for deployment in edge environments such as IoT devices, 

autonomous systems, and wearable electronics, where operational conditions are less controlled. 

VI. Conclusion 

This paper presented a comprehensive study on reconfigurable energy-efficient circuits for 

scalable analog neural networks, addressing the challenge of balancing adaptability with ultra-

low-power operation. By integrating tunable amplifiers, non-volatile memory storage, and 

reconfigurable interconnects, we demonstrated that analog neural networks can be made both 

flexible and scalable without sacrificing their inherent energy efficiency. Experimental results 

validated the design’s effectiveness, showing significant improvements in energy consumption, 

throughput, and robustness while maintaining high accuracy across tasks. These findings 

establish reconfigurable analog circuits as a promising foundation for next-generation edge AI 

platforms, enabling systems that are not only efficient but also adaptable to the rapidly evolving 

landscape of machine learning. 
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