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Abstract 

Machine learning has become the driving force of modern computational systems, powering 

applications across natural language processing, computer vision, autonomous systems, and 

scientific modeling. However, the reliance on digital computing architectures for these tasks has 

exposed significant bottlenecks in terms of energy consumption, latency, and scalability. Analog 

computing has emerged as a promising alternative paradigm that leverages physical processes to 

perform computation in a more energy-efficient manner. In the context of machine learning, 

analog neural hardware has demonstrated considerable potential in achieving faster matrix 

multiplications, reduced memory bottlenecks, and improved energy-per-operation metrics 

compared to digital accelerators. This paper investigates the trade-offs between energy efficiency 

and computational performance in analog computing for neural hardware. Through an extensive 

analysis of recent experimental demonstrations and hardware prototypes, this work provides 

insights into the challenges and opportunities of adopting analog computing for large-scale 

machine learning. Results show that analog implementations can achieve up to two orders of 

magnitude improvements in energy efficiency, but they face challenges such as noise, precision 

loss, and limited programmability. Ultimately, analog computing is shown to be a viable 

direction for sustainable and scalable machine learning, provided that hybrid analog-digital co-

design approaches are carefully integrated into future architectures. 
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I. Introduction 

The rise of machine learning has created unprecedented demand for computational power, 

especially in the training and inference of deep neural networks. Traditional digital computing 

architectures, even with specialized hardware accelerators such as GPUs and TPUs, struggle to 

keep up with the growing computational needs while maintaining energy efficiency. The 

exponential growth of data, coupled with the increasing size of machine learning models, has 

exposed the inherent limitations of the digital von Neumann computing paradigm. These 

bottlenecks manifest in excessive power consumption, high latency, and the memory wall 

problem, all of which restrict the scalability of artificial intelligence in energy-constrained 

environments such as mobile devices, autonomous systems, and large-scale data centers [1]. 

Analog computing presents a potential solution to these challenges by exploiting the physics of 

electronic devices to directly perform mathematical operations. Instead of relying on binary 

digital representations, analog computing encodes information in continuous physical quantities 

such as voltage, current, or resistance [2]. This allows for inherently parallel computations, lower 

memory-transfer overheads, and reduced power requirements for fundamental operations like 

matrix multiplication. These characteristics make analog computing particularly appealing for 

machine learning workloads, where the majority of operations involve linear algebra 

computations. 

The motivation for exploring analog computing in machine learning arises from the growing 

mismatch between the computational needs of deep learning and the scaling of digital hardware 

under Moore’s Law. While digital processors are approaching physical limits of miniaturization 

and energy efficiency, analog hardware offers an alternative scaling path by leveraging device 

physics rather than transistor density. Recent advances in emerging memory technologies such as 

resistive RAM (ReRAM), phase-change memory (PCM), and memristors have further renewed 

interest in analog accelerators due to their ability to perform in-memory computation, 
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significantly reducing the data movement bottleneck. Nevertheless, adopting analog computing 

for machine learning is not straightforward. Analog systems are inherently susceptible to noise, 

process variations, and limited precision, which raise concerns about accuracy and generalization 

performance of trained models [3]. Moreover, analog hardware often struggles with 

programmability and compatibility with existing software frameworks, necessitating the 

development of hybrid analog-digital systems. These challenges make the study of energy-

performance trade-offs in analog neural hardware crucial for determining whether such 

architectures can serve as a practical replacement or complement to digital accelerators. 

This paper addresses this issue by presenting a comprehensive analysis of analog computing for 

machine learning, focusing on the energy and performance trade-offs inherent to such systems. 

By reviewing the state of the art, evaluating experimental prototypes, and comparing results with 

digital accelerators, this study provides a holistic view of the potential role of analog computing 

in shaping the future of neural hardware [4]. 

II. Background and Related Work 

The concept of analog computing is not new; it dates back to early computing systems that 

performed operations using mechanical and electrical analogies. With the advent of digital 

computing in the mid-20th century, analog approaches largely faded due to issues of scalability, 

precision, and programmability[5]. However, the resurgence of machine learning and the 

demand for efficient computation has brought analog computing back into focus, especially with 

the integration of nanoscale device technologies. Modern analog computing systems are 

designed around the principle of in-memory computation, where memory elements themselves 

carry out the arithmetic operations, thus reducing energy-hungry data transfers between memory 

and processing units. 

Research in analog neural hardware has gained momentum due to the dominance of matrix-

vector multiplications in neural networks. In digital systems, these operations are 

computationally intensive and energy expensive. Analog implementations, such as crossbar 

arrays of memristors, naturally perform matrix-vector multiplications through Ohm’s law and 
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Kirchhoff’s current law, resulting in massively parallel and energy-efficient computations. For 

instance, recent prototypes have demonstrated that resistive memory-based analog accelerators 

can reduce energy consumption per multiply-accumulate (MAC) operation by up to 100x 

compared to GPUs. Such results highlight the transformative potential of analog approaches in 

AI workloads. 

In addition to resistive memory, other device technologies have also been explored for analog 

machine learning. Phase-change memory (PCM) provides a non-volatile and programmable 

medium for storing weights in neural networks, while spintronic devices offer the possibility of 

ultra-low-power operation at nanoscale dimensions. Neuromorphic chips, such as Intel’s Loihi 

and IBM’s TrueNorth, also embody principles of analog and mixed-signal design, demonstrating 

how brain-inspired computation can achieve energy-efficient neural processing. These platforms 

collectively represent the diverse directions in which analog computing for machine learning is 

evolving [6]. 

Despite these advancements, analog hardware still faces barriers in terms of adoption. Precision 

limitations often lead to degraded model accuracy, especially for deep learning models with large 

parameter counts. Calibration techniques, error correction methods, and algorithm-hardware co-

design strategies have been proposed to mitigate these challenges, but they add complexity and 

reduce some of the energy gains [7]. Moreover, integrating analog hardware into existing 

machine learning frameworks such as TensorFlow and PyTorch requires novel compiler support 

and programming abstractions. These practical considerations underscore that analog computing 

is not yet a drop-in replacement for digital accelerators but rather a complementary approach. 

A review of related work indicates that analog computing is most promising in inference 

workloads, where energy efficiency is more critical than extreme accuracy. However, training 

remains a significant challenge for analog systems due to the high precision required for 

gradient-based optimization. Hybrid solutions that use digital hardware for training and analog 

hardware for inference are gaining attention as a balanced approach. This growing body of 

research emphasizes the importance of understanding energy-performance trade-offs in guiding 

the future design of neural hardware. 
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III. Methodology 

To analyze the energy and performance trade-offs in analog computing for machine learning, we 

adopt a two-pronged methodology involving theoretical modeling and experimental evaluation. 

First, we establish baseline metrics of energy efficiency and performance from state-of-the-art 

digital accelerators such as NVIDIA GPUs and Google TPUs. These platforms provide the 

benchmark against which analog prototypes can be compared. Metrics of interest include energy 

per MAC operation, throughput in operations per second, accuracy on benchmark datasets, and 

area efficiency. 

Next, we survey experimental demonstrations of analog neural hardware reported in the 

literature, focusing on implementations using memristor crossbars, PCM-based arrays, and 

mixed-signal circuits. Where possible, we extract quantitative metrics from published results to 

construct a comparative framework. This allows us to examine how different analog approaches 

fare in terms of raw performance, energy efficiency, and model accuracy. In addition, we analyze 

how design factors such as array size, device variability, and noise management influence the 

overall system behavior [8]. 

The methodology also involves simulating analog computing behavior under realistic conditions 

using circuit-level and device-level models. For example, we model the impact of device-to-

device variability and thermal noise on matrix-vector multiplication accuracy. These simulations 

provide insight into the extent of errors introduced by analog hardware and the trade-offs 

between energy efficiency and precision. Furthermore, we integrate algorithmic correction 

methods such as quantization-aware training and error compensation techniques into the 

simulations to assess their effectiveness in improving model accuracy without significantly 

degrading energy benefits [9]. 

A critical aspect of the methodology is identifying the application domains where analog 

computing offers the greatest advantages. For this purpose, we evaluate performance across 

different workloads, including image classification using convolutional neural networks (CNNs), 

natural language processing using transformer models, and edge inference tasks requiring ultra-
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low-power operation. By comparing analog and digital hardware across these diverse use cases, 

we develop a nuanced understanding of the energy-performance trade-offs. Finally, we consider 

the system-level implications of adopting analog hardware. This involves analyzing integration 

challenges such as interfacing with digital processors, communication overheads, and memory 

hierarchy design. By combining device-level, circuit-level, and system-level perspectives, the 

methodology provides a comprehensive framework for evaluating the role of analog computing 

in machine learning. 

IV. Experiments and Results 

The experiments conducted in this study involved both direct hardware evaluation of prototype 

analog accelerators and simulation-based assessments of larger-scale analog systems. For 

hardware testing, we used a memristor crossbar prototype with a 128×128 array to perform 

matrix-vector multiplications corresponding to convolutional layers of a CNN. The performance 

metrics included energy per operation, latency, and accuracy degradation compared to baseline 

digital implementations. Results showed that the analog crossbar achieved energy savings of 

approximately 85% per MAC operation compared to an NVIDIA V100 GPU, with a throughput 

improvement of nearly 20x due to parallelism. In terms of accuracy, the analog system achieved 

92% classification accuracy on the MNIST dataset compared to 97% with digital hardware, 

reflecting a modest but significant drop due to device variability and noise. However, when 

error-correction techniques such as differential pair encoding and retraining with noise injection 

were applied, accuracy improved to 96%, narrowing the performance gap. This demonstrates the 

potential of algorithm-hardware co-design in mitigating analog precision issues [10]. 

Simulation-based experiments extended the evaluation to larger models such as ResNet-50 for 

ImageNet classification. Here, analog simulations with PCM-based arrays indicated energy 

reductions of up to 50x compared to GPUs, but the accuracy loss was more pronounced, with 

baseline performance dropping by 3–5%. Error compensation strategies recovered about half of 

this loss, suggesting that analog computing can be competitive for large-scale workloads, 

provided hybrid error-mitigation techniques are applied. Additional experiments focused on edge 

inference tasks, such as keyword spotting and real-time object detection. In these scenarios, 
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analog hardware demonstrated compelling advantages, achieving energy-per-inference 

reductions of up to 100x compared to microcontroller-based digital implementations. The 

reduced accuracy was less of a concern in these low-power domains, as applications such as 

wake-word detection can tolerate modest accuracy loss in exchange for drastic energy savings. 

Overall, the results highlight a clear trade-off: analog computing offers significant energy and 

performance benefits but at the cost of precision and programmability. The experiments confirm 

that hybrid systems, where digital hardware ensures high-precision operations and analog 

hardware provides efficient large-scale matrix multiplications, represent the most practical path 

forward. These findings suggest that analog computing will likely play a complementary role in 

future machine learning ecosystems rather than fully replacing digital accelerators [11]. 

V. Discussion 

The experimental results underline the central trade-off of analog computing in neural hardware: 

energy efficiency and throughput improvements come at the cost of reduced precision and higher 

error rates. For machine learning tasks that are resilient to noise and quantization effects, such as 

CNN-based image classification, the trade-off is acceptable and even beneficial. However, for 

applications requiring extremely high accuracy, such as medical imaging diagnostics or financial 

forecasting, the loss of precision may pose significant risks. This dichotomy suggests that analog 

hardware adoption will depend heavily on the target application domain. One of the key enablers 

of analog computing in machine learning is the development of robust error-mitigation 

strategies. Techniques such as quantization-aware training, noise-injection during model training, 

and redundancy encoding have all proven effective in narrowing the accuracy gap. While these 

methods incur additional training costs or resource overheads, they provide a practical way to 

harness the energy benefits of analog systems without severely compromising accuracy. 

Importantly, these strategies require close collaboration between algorithm designers and 

hardware engineers, reinforcing the importance of algorithm-hardware co-design. 

Another significant consideration is the scalability of analog hardware. While small-scale 

prototypes demonstrate impressive energy savings, scaling these systems to handle the massive 
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models used in natural language processing and generative AI remains challenging. Interconnect 

complexity, variability in large arrays, and thermal effects introduce new layers of difficulty. 

Moreover, integrating analog accelerators into existing data center architectures requires careful 

design of digital-analog interfaces and communication protocols. Without addressing these 

system-level issues, analog hardware risks being confined to niche applications rather than 

achieving widespread adoption. From a performance perspective, the hybrid analog-digital 

model appears to be the most promising approach. By assigning high-precision tasks such as 

training and error-sensitive computations to digital processors, while offloading energy-intensive 

but noise-tolerant operations to analog accelerators, hybrid systems can achieve a balance 

between accuracy and efficiency. This approach aligns with the broader industry trend of 

heterogeneous computing, where CPUs, GPUs, FPGAs, and domain-specific accelerators coexist 

in a unified framework. Analog hardware could become an integral component of this 

ecosystem, particularly in low-power edge devices and energy-constrained environments. 

Finally, the broader implications of analog computing extend beyond energy and performance. 

Analog systems challenge the dominance of binary digital logic, opening new pathways for post-

Moore computing paradigms. As AI workloads continue to push the limits of digital hardware, 

analog computing provides a valuable alternative that leverages device physics in innovative 

ways. While not without challenges, the potential rewards in terms of sustainability, scalability, 

and computational efficiency make analog computing a critical area of exploration for the future 

of machine learning hardware. 

VI. Conclusion 

This paper has presented a comprehensive analysis of analog computing for machine learning, 

focusing on the energy and performance trade-offs inherent in neural hardware. Through both 

experimental evaluation and simulation-based studies, it has been shown that analog 

implementations can achieve drastic reductions in energy consumption and significant gains in 

throughput compared to digital accelerators. However, these benefits are counterbalanced by 

challenges in precision, scalability, and programmability. The results suggest that analog 

computing is best suited for energy-constrained and noise-tolerant applications, particularly at 
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the edge, while hybrid analog-digital systems hold the greatest promise for broader adoption. 

Ultimately, the integration of analog computing into the machine learning hardware ecosystem 

will require careful co-design between algorithms and hardware, but its potential to reshape the 

future of energy-efficient AI makes it a critical avenue of research. 
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