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Abstract 

As machine learning (ML) systems become deeply embedded in critical infrastructures, ranging 

from healthcare diagnostics to financial risk assessment and autonomous vehicles, the 

trustworthiness of the underlying hardware emerges as a decisive factor in ensuring system 

integrity. Conventional ML hardware accelerators focus heavily on performance and energy 

efficiency but often overlook the fundamental role of hardware security. This oversight exposes 

AI systems to vulnerabilities such as data poisoning, model theft, side-channel leakage, and 

hardware Trojans. This paper explores the integration of security primitives—cryptographic 

modules, physically unclonable functions (PUFs), trusted execution environments (TEEs), and 

secure boot mechanisms—directly into ML hardware design to build trusted AI systems. 

Through detailed analysis and experiments on a hardware-accelerated ML prototype enhanced 

with security primitives, the results indicate significant improvements in resistance to adversarial 

interference and unauthorized access, while maintaining competitive performance metrics. The 

research highlights how embedding security primitives at the hardware level can shift the 

paradigm from performance-driven AI hardware toward resilient and trustworthy AI 

infrastructures. 
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I. Introduction 

The rapid growth of machine learning applications across sensitive domains has amplified the 

critical importance of system security. While software-level defenses have matured in recent 

years, adversaries increasingly target vulnerabilities at the hardware layer, where assumptions of 

trustworthiness are often misplaced [1]. Attacks such as side-channel leakage, fault injection, and 

model extraction through hardware interfaces illustrate how weaknesses at the physical level 

undermine even the most advanced algorithms. As AI adoption accelerates in mission-critical 

contexts, including defense and healthcare, reliance on hardware without robust security 

guarantees poses unacceptable risks. The urgent question becomes: how can machine learning 

hardware be designed to ensure trustworthiness without sacrificing performance? 

Traditional approaches in ML hardware design have centered on optimizing throughput, memory 

access patterns, and energy efficiency [2]. While these dimensions remain important, they do not 

address the fact that performance is rendered meaningless if an adversary can manipulate or 

exfiltrate the very computations being optimized. Security primitives such as cryptographic 

accelerators, secure memory modules, and physically unclonable functions (PUFs) represent 

foundational tools that, if embedded at the design stage, can make ML accelerators not only 

faster but inherently more resistant to compromise. This represents a paradigm shift from 

patching vulnerabilities after deployment to hardening systems by design. Another pressing 

consideration is that hardware-level trust enables system-wide assurances. Unlike software 

protections, which can be bypassed or corrupted, security primitives hardwired into silicon 

provide immutable guarantees. For example, secure boot ensures only authenticated models and 

firmware execute on the device, while TEEs isolate sensitive ML operations from untrusted 

processes. These primitives, once integrated, reduce the attack surface dramatically and empower 

AI developers to build on a foundation of trust [3]. 

Despite the promise, integrating these primitives raises concerns about cost, complexity, and 

performance overhead. There is an inherent trade-off between embedding strong cryptographic 

protections and sustaining the low-latency, high-throughput requirements of modern ML 

workloads. However, recent advancements in lightweight cryptography, energy-efficient secure 
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memory, and PUF-based key generation indicate that this balance is achievable. The challenge 

lies in architecting solutions that address real-world attack vectors while minimizing disruption 

to core ML acceleration functions. This paper explores these challenges and opportunities in 

depth. By examining both the theoretical underpinnings of hardware security primitives and their 

practical impact through experimental prototypes, we demonstrate that security and performance 

are not mutually exclusive [4]. Instead, their integration is essential for fostering trust in AI 

systems as they increasingly shape the decisions, safety, and economic outcomes of societies 

worldwide. 

II. Literature Review 

The discourse around hardware security for machine learning systems has gained traction only in 

recent years, as attacks have shifted toward exploiting weaknesses below the algorithmic level. 

Early work focused primarily on software defenses, such as adversarial training and robust 

optimization, leaving the hardware ecosystem relatively unexplored. However, as hardware 

accelerators became widespread, researchers began identifying critical vulnerabilities. Studies on 

side-channel analysis showed how power traces, electromagnetic emissions, or timing behavior 

could leak model parameters from neural networks running on hardware accelerators. These 

findings underscored the insufficiency of purely software-driven defenses [5]. 

Cryptographic primitives, particularly those involving lightweight encryption and secure key 

storage, have long been studied in embedded systems but are only now being applied to ML 

hardware. Physically unclonable functions (PUFs), which exploit manufacturing variations to 

produce unique device identifiers, have been proposed as secure and low-cost methods for 

authentication and key management in AI accelerators. Their integration into ML hardware 

promises protection against model theft, cloning, and unauthorized deployment of AI models, 

which is vital in competitive industries where intellectual property represents strategic assets. 

Trusted Execution Environments (TEEs), originally popularized in general-purpose CPUs, have 

seen recent adaptation for ML workloads. By creating isolated execution contexts, TEEs protect 

sensitive computations from being tampered with by malicious software or hardware processes. 

The challenge lies in extending TEE concepts to specialized ML accelerators, where parallelism 
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and throughput requirements differ from traditional computing architectures. Nevertheless, case 

studies show promise in applying TEEs for securing inference in federated learning systems, 

where trust boundaries are inherently weak [6]. 

The literature also highlights the tension between performance and security. Some researchers 

argue that integrating strong primitives increases latency and power consumption, potentially 

offsetting the gains achieved through hardware acceleration. However, recent prototypes suggest 

that with careful design, this overhead can be minimized to acceptable levels. For instance, 

hardware-accelerated encryption pipelines have been shown to add less than 5% latency to 

inference while significantly improving resilience against data exfiltration. These developments 

suggest that performance penalties are not insurmountable barriers. 

Despite these advances, gaps remain. Few studies provide comprehensive frameworks for 

integrating multiple primitives into a cohesive security architecture tailored for ML hardware. 

Most focus narrowly on one mechanism, such as encryption or PUFs, without addressing holistic 

trust guarantees. Furthermore, limited experimental evaluations hinder understanding of the 

practical trade-offs in real-world deployments. This paper seeks to address these gaps by 

proposing an integrated approach and validating it through experimental analysis on a prototype 

ML accelerator enhanced with multiple primitives. 

III. Methodology 

The methodology of this research involves designing, implementing, and evaluating a prototype 

ML hardware accelerator that integrates key security primitives into its architecture. The baseline 

system was a reconfigurable FPGA-based accelerator optimized for deep learning inference 

tasks. This baseline was enhanced with three major primitives: a secure boot mechanism 

ensuring only authenticated models and firmware could be executed, lightweight cryptographic 

modules for protecting data transfers, and a PUF-based key generation system to provide unique 

device identifiers and secure key storage [7]. 

The integration process involved modifying the hardware description language (HDL) code of 

the accelerator to incorporate these primitives at key points. For secure boot, the hardware was 
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equipped with a cryptographic signature verification unit that checked the integrity of model 

weights and firmware before loading them into memory. Lightweight encryption modules were 

embedded into the memory controller, ensuring that all off-chip communications between the 

accelerator and external DRAM were encrypted in real-time. The PUF circuitry was 

implemented using delay-based structures on the FPGA, allowing each device to generate a 

unique cryptographic key at runtime without requiring permanent key storage [8]. 

To evaluate the impact of these primitives, a series of controlled experiments were conducted. 

The test workload consisted of convolutional neural networks (CNNs) trained for image 

classification tasks on the CIFAR-10 and MNIST datasets. The evaluation metrics included 

performance overhead (measured in latency and throughput), power consumption, and resilience 

against simulated attacks. Adversarial scenarios included attempts at model extraction through 

side-channel analysis, data interception through bus snooping, and unauthorized firmware 

loading. 

The experimental setup also incorporated monitoring tools for capturing detailed power traces 

and latency measurements. This enabled assessment of whether the added primitives introduced 

detectable side-channel signatures or unacceptable performance penalties. In addition, resilience 

metrics were collected by measuring the success rates of attacks before and after integrating the 

primitives. For instance, the probability of successful side-channel key extraction was reduced 

from over 80% in the baseline system to less than 5% in the secured prototype. 

Through this methodology, the research aimed to balance two competing goals: ensuring strong 

hardware-level trust guarantees while maintaining the throughput and efficiency required by 

modern ML workloads [9]. By combining theoretical design considerations with practical 

experimental validation, the methodology demonstrates a holistic approach to advancing trusted 

AI hardware. 

IV. Experimental Results and Analysis 

The experiments yielded significant insights into both the feasibility and trade-offs of integrating 

security primitives into ML hardware. Performance analysis showed that while the inclusion of 
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secure boot and lightweight cryptography introduced measurable overhead, this remained within 

tolerable bounds for real-world deployments. On average, inference latency increased by 6.2%, 

while throughput reduction was limited to 4.8%. Power consumption rose by approximately 7%, 

primarily due to the encryption modules, but this increase was offset by the energy efficiency of 

the underlying FPGA design. These results suggest that security can be meaningfully enhanced 

without severely compromising efficiency [10]. 

In terms of resilience, the secured accelerator demonstrated a substantial reduction in 

vulnerability. For instance, bus snooping attacks aimed at intercepting model weights during 

loading were rendered ineffective due to real-time encryption of memory traffic. Side-channel 

attacks that previously yielded accurate leakage of weight parameters now failed, with the 

success rate dropping below 5% even after extended observation periods. Unauthorized firmware 

attempts were consistently blocked by the secure boot mechanism, ensuring only signed and 

authenticated binaries executed on the hardware. These outcomes collectively illustrate how 

integrating primitives translates into practical defenses against real-world threats. 

The PUF-based system proved particularly effective in providing lightweight, low-cost device 

authentication. Each prototype generated a unique identifier, which could be used to derive 

cryptographic keys on demand. These keys were never stored permanently, eliminating risks of 

key theft through invasive hardware probing. The entropy of the generated keys was measured 

across multiple devices and showed strong statistical randomness, reinforcing the robustness of 

the approach. Importantly, PUF operation added negligible latency, making it ideal for real-time 

ML workloads. 

Interestingly, the analysis also revealed that while security primitives significantly improved 

resilience, they introduced new considerations. For example, the additional hardware complexity 

increased design and verification efforts, and the cryptographic units introduced minor hotspots 

in power distribution. These challenges highlight the importance of careful co-design between 

security modules and ML accelerator pipelines [11], ensuring one does not inadvertently 

undermine the other. Nonetheless, the trade-offs were deemed acceptable given the significant 

security gains achieved. Overall, the results validate the hypothesis that integrating security 
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primitives directly into ML hardware creates tangible trust guarantees. The balance between 

performance and protection can be carefully managed through design optimization and selection 

of lightweight primitives. By quantifying both the costs and benefits, this analysis provides a 

roadmap for future AI hardware development that prioritizes not only efficiency but also 

resilience and trustworthiness. 

V. Conclusion 

This research demonstrated that integrating security primitives into machine learning hardware is 

both feasible and essential for building trusted AI systems. By embedding secure boot 

mechanisms, lightweight cryptography, and physically unclonable functions into a hardware 

accelerator prototype, the system achieved significant resilience against side-channel, data 

interception, and unauthorized firmware attacks. Experimental results confirmed that while 

modest performance and power overheads were introduced, they were outweighed by the 

substantial security benefits. The study highlights that trust at the hardware level cannot be an 

afterthought but must be an integral design objective for AI systems deployed in sensitive and 

mission-critical contexts. The findings provide strong evidence that future AI hardware must 

evolve from performance-driven architectures toward holistic platforms that embed security 

primitives, thereby enabling the creation of resilient, trustworthy, and future-ready AI 

infrastructures. 
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