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Abstract 

The rapid expansion of artificial intelligence (AI) applications has led to a demand for 

specialized hardware that can support neural computation while remaining energy-efficient. 

Traditional digital processors struggle with the high computational requirements of deep learning 

workloads, prompting a transition toward on-chip accelerators tailored for neural networks. 

Among the critical challenges is the design of circuits that minimize power consumption while 

maintaining performance and scalability. This paper explores the design principles and 

optimization techniques for energy-efficient circuits targeting on-chip neural computation. It 

analyzes trade-offs between digital and analog implementations, evaluates architectural strategies 

such as approximate computing and memory-centric design, and presents experimental results 

highlighting improvements in power efficiency and throughput. Through circuit-level 

optimizations and algorithm-hardware co-design, the study demonstrates that significant energy 

savings can be achieved without sacrificing computational accuracy. This work provides insights 

into the future direction of low-power AI hardware and its applicability to edge intelligence and 

real-time inference systems. 

Keywords: Energy-efficient circuits, On-chip neural computation, Low-power design, Hardware 

optimization, Edge AI, Approximate computing. 

I. Introduction 

The proliferation of machine learning and neural network workloads has fundamentally changed 

the design requirements of modern computing hardware. Traditional von Neumann architectures, 
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dominated by central processing units (CPUs) and graphics processing units (GPUs), often 

consume excessive power when tasked with large-scale neural computations. While GPUs 

deliver high throughput, they are not always suitable for low-power scenarios, especially in edge 

devices that require energy-efficient inference capabilities [1]. Consequently, there is a growing 

emphasis on designing specialized circuits that perform neural computations in a manner 

optimized for both energy efficiency and performance. 

Energy-efficient circuit design for neural computation goes beyond transistor-level power 

reduction strategies. It requires a holistic approach that incorporates architectural optimizations, 

memory access minimization, approximate arithmetic, and adaptive voltage scaling. Neural 

computation is inherently error-tolerant, meaning that small inaccuracies in computation do not 

necessarily degrade the final inference quality. This property opens opportunities to trade 

precision for power savings, enabling the design of circuits that are significantly more energy-

efficient than conventional high-precision digital hardware. One of the main drivers of this 

research area is the need for on-chip neural computation in edge AI applications. Devices such as 

mobile phones, wearables, IoT sensors, and autonomous drones require localized intelligence 

without relying on cloud connectivity [2]. These devices often operate under strict energy 

constraints and demand real-time responses. Designing optimized circuits tailored for neural 

networks addresses both requirements: it reduces the latency associated with off-chip 

communication and conserves energy by minimizing redundant computations. 

Moreover, the shift toward neuromorphic and analog-inspired computation models has further 

accelerated the exploration of energy-efficient circuit designs. Analog and mixed-signal circuits 

can emulate neural computations with lower energy costs compared to purely digital 

implementations. However, challenges such as noise susceptibility, device variability, and 

scalability need to be addressed before analog neural circuits become mainstream. This paper 

aims to provide a comprehensive exploration of design methodologies and optimization 

techniques for energy-efficient circuits dedicated to on-chip neural computation. It presents 

experimental results from prototype implementations and evaluates the impact of different 

optimization strategies [3]. The findings contribute to the broader vision of sustainable AI 

hardware capable of scaling with the increasing demands of neural computation. 
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II. Circuit Design Strategies for Neural Computation 

The design of circuits for neural computation is a multi-dimensional problem, requiring careful 

consideration of computational accuracy, energy consumption, scalability, and area overhead. 

Conventional digital circuits rely on fixed-precision arithmetic, which, while reliable, consumes 

significant power due to the cost of multiplications and memory accesses. To address this, one 

effective strategy is the adoption of approximate computing techniques. These circuits 

deliberately sacrifice a degree of accuracy in arithmetic operations, such as multipliers and 

adders, to achieve notable reductions in power consumption and area utilization. Approximate 

circuits have been shown to reduce energy usage by up to 40% while maintaining acceptable 

inference accuracy [4]. Another promising approach lies in the use of in-memory computing 

architectures. In conventional systems, data movement between memory and processing units 

contributes significantly to energy consumption. By embedding computation directly into 

memory arrays—such as SRAM or non-volatile memory—the energy overhead of memory 

access can be substantially reduced. Resistive RAM (RRAM) and Phase-Change Memory 

(PCM) are particularly attractive technologies for implementing in-memory matrix-vector 

multiplications, which are fundamental to neural network inference. This shift toward memory-

centric designs aligns with the energy efficiency goals of on-chip computation. 

Analog and mixed-signal circuits also play a vital role in neural computation. Multiplication and 

accumulation (MAC) operations, which dominate neural workloads, can be efficiently 

implemented in analog domains through current summation or charge sharing. Such designs 

achieve orders-of-magnitude reductions in energy consumption compared to digital counterparts. 

However, circuit non-idealities such as thermal noise, device mismatch, and limited dynamic 

range require compensation strategies to ensure reliable computation. Calibration circuits and 

digital correction techniques are often integrated to balance accuracy and energy savings. 

Configurability is another essential aspect of circuit design for neural networks.  

Neural models evolve rapidly, and hardware must be adaptable to different architectures and 

workloads. Field-programmable gate arrays (FPGAs) and custom accelerators with 

programmable data paths provide the flexibility to support a variety of neural architectures while 

optimizing energy efficiency [5]. Circuit-level design choices, such as adaptive precision 
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arithmetic and clock gating, further contribute to reducing dynamic and static power. n addition, 

low-power design strategies such as dynamic voltage and frequency scaling (DVFS) are 

integrated into neural computation circuits [6]. Since different layers of neural networks have 

different computational intensities, DVFS enables fine-grained power management by lowering 

the supply voltage during less demanding operations. This adaptive approach ensures that energy 

is only consumed where necessary, making circuits more efficient overall. 

III. Optimization Techniques for Energy Efficiency 

Optimization of neural computation circuits involves strategies across the device, circuit, 

architecture, and system levels. At the device level, emerging memory technologies such as 

RRAM and PCM enable non-volatile storage with built-in computing capabilities, reducing the 

cost of frequent weight access in neural networks. These devices also support parallelism, 

allowing multiple computations to occur simultaneously, thereby increasing throughput while 

reducing energy. At the circuit level, precision scaling is a key optimization method. Since 

neural networks do not always require full 32-bit floating-point precision, circuits can be 

designed to use 16-bit or even 8-bit fixed-point arithmetic without significant accuracy loss. This 

reduction in bit-width directly lowers switching activity and area, which in turn reduces dynamic 

power consumption. Circuit optimizations such as power gating, approximate arithmetic, and 

clock gating further contribute to minimizing leakage and dynamic power [7]. 

From an architectural standpoint, exploiting data reuse is critical for optimizing energy 

efficiency. Neural networks involve repeated access to weights and activations, and minimizing 

redundant memory fetches can significantly cut down energy consumption. Techniques such as 

weight stationary, output stationary, and row-stationary data flows ensure that data movement is 

minimized, thereby optimizing circuit energy efficiency. These dataflows are often realized in 

systolic arrays, where localized communication between processing elements reduces the energy 

costs associated with long-distance data transfer. Algorithm-hardware co-design is another 

powerful optimization approach. Neural network models can be pruned, quantized, or 

compressed to reduce the number of operations, and circuits can be designed specifically to 

exploit these reduced-complexity models [8]. For instance, weight pruning eliminates redundant 

connections, which means fewer multiplications need to be performed in hardware. Similarly, 
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quantization reduces bit-widths, enabling the use of low-power arithmetic circuits. By co-

optimizing neural architectures with hardware designs, the overall energy efficiency of on-chip 

computation can be substantially improved. 

Finally, thermal-aware circuit optimization is an often-overlooked aspect of energy-efficient 

design. As circuits operate, heat dissipation becomes a limiting factor in sustaining performance. 

Energy-efficient designs must include techniques for thermal management, such as workload 

balancing across compute units and integration of temperature sensors for adaptive throttling. 

Optimizing thermal performance ensures that circuits maintain reliable operation while avoiding 

excessive power loss due to leakage currents at elevated temperatures [9]. 

IV. Experimental Setup and Results 

To validate the proposed circuit design and optimization strategies, a prototype accelerator was 

implemented and tested under a set of standard neural network benchmarks, including image 

classification using CIFAR-10 and digit recognition using MNIST. The accelerator was 

fabricated in a 28nm CMOS process and integrated energy-efficient techniques such as 

approximate multipliers, in-memory computation modules, and adaptive precision arithmetic. 

The system was evaluated for power consumption, throughput, and classification accuracy to 

measure the trade-offs between energy efficiency and computational reliability. The 

experimental results demonstrated significant improvements in power efficiency compared to 

conventional digital accelerators. The use of approximate multipliers reduced dynamic power 

consumption by 32% while maintaining classification accuracy within 1.2% of the baseline 

model. In-memory computation modules based on SRAM arrays further reduced memory access 

energy by 45%, with an overall system-level power reduction of 38%. These results validate the 

potential of in-memory and approximate computing for on-chip neural computation. 

Moreover, the use of adaptive precision arithmetic allowed for dynamic switching between 8-bit 

and 16-bit operations depending on the network layer requirements. This approach yielded a 

further 12% reduction in energy consumption, with minimal accuracy degradation. The 

flexibility provided by adaptive precision circuits demonstrates the importance of tailoring 

computation resources to workload requirements. Throughput performance was also evaluated. 
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The prototype accelerator achieved 4.2 TOPS/W (Tera Operations per Second per Watt), which 

is a substantial improvement over conventional GPU-based solutions that typically achieve less 

than 1 TOPS/W in similar workloads. This highlights the effectiveness of circuit-level 

optimizations in enhancing both energy efficiency and performance. 

In terms of area efficiency, the design achieved a compact footprint by leveraging approximate 

arithmetic and in-memory computation, which reduced the reliance on large digital multipliers 

and memory controllers. The results confirm that circuit-level innovations not only reduce power 

but also allow for denser integration of computation resources, making the approach highly 

scalable for future generations of AI hardware. 

V. Discussion 

The experimental results highlight the practical feasibility of designing and optimizing energy-

efficient circuits for on-chip neural computation. By combining approximate computing, in-

memory architectures, and adaptive precision arithmetic, significant reductions in power 

consumption were achieved without major compromises in accuracy. These findings are 

consistent with the error-tolerant nature of neural networks, which enables designers to exploit 

circuit-level approximations for energy savings. One key takeaway from the results is the central 

role of memory in determining energy efficiency. Data movement consumes far more energy 

than arithmetic operations, making in-memory computing a critical direction for future designs. 

By embedding computation into memory structures, not only is power reduced, but latency is 

also minimized, leading to faster inference times. This is particularly beneficial for edge AI 

systems where both power and responsiveness are crucial. 

The results also underscore the importance of workload adaptability. Neural network workloads 

are highly heterogeneous, with different layers demanding varying degrees of computational 

precision. Adaptive precision circuits that can dynamically adjust bit-widths offer a balanced 

solution, optimizing energy savings while retaining model accuracy. This adaptability makes 

circuits more versatile across a wide range of neural architectures and applications. However, 

challenges remain in scaling these techniques to larger and more complex neural networks. 

While approximate computing and in-memory approaches work well for small to medium-sized 
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workloads, ensuring scalability to very deep networks requires innovations in reliability and 

robustness. For instance, analog in-memory circuits are sensitive to process variations and noise, 

which could become problematic in larger-scale deployments. Hybrid digital-analog solutions 

may provide a middle ground, offering both energy efficiency and robustness. 

Finally, the broader implications of these findings suggest that future AI hardware must be co-

designed with algorithms in mind [10]. Model compression, quantization, and pruning directly 

influence hardware requirements, and hardware optimizations must align with these algorithmic 

changes. A synergistic approach will enable sustainable scaling of AI hardware, paving the way 

for intelligent systems that are both powerful and energy-efficient [11]. 

VI. Conclusion 

This study has explored the design and optimization of energy-efficient circuits for on-chip 

neural computation, presenting circuit-level strategies, architectural optimizations, and 

experimental results that validate their effectiveness. The findings demonstrate that combining 

approximate computing, in-memory architectures, and adaptive precision arithmetic significantly 

reduces energy consumption while maintaining competitive accuracy and throughput. By 

addressing both computation and data movement bottlenecks, the proposed techniques achieved 

substantial gains in energy efficiency, with experimental results showing up to 38% system-level 

power reduction and performance improvements exceeding state-of-the-art digital accelerators. 

These results highlight the importance of algorithm-hardware co-design, adaptability, and 

scalability in creating circuits tailored for the unique characteristics of neural computation. As AI 

continues to expand into edge devices and real-time applications, the strategies outlined in this 

work provide a pathway toward sustainable and high-performance AI hardware, enabling the 

integration of intelligence into resource-constrained environments without compromising 

efficiency or effectiveness. 
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