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Abstract 

The increasing deployment of machine learning (ML) systems in critical applications such as 

healthcare, finance, autonomous driving, and defense has drawn significant attention to their 

vulnerability to adversarial attacks. These attacks, which manipulate input data to induce 

misclassification, pose serious threats to the integrity and reliability of intelligent devices. While 

software-based defense strategies have been extensively studied, they are often insufficient 

against sophisticated adversaries, particularly in edge and embedded systems with limited 

resources. This paper investigates hardware-level countermeasures designed to enhance the 

resilience of ML devices against adversarial attacks. By leveraging circuit-level design 

principles, memory security, noise injection, and secure accelerators, hardware countermeasures 

provide robust protection that complements software defenses. Through experimental 

evaluations on FPGA-based ML accelerators, we demonstrate the effectiveness of hardware-

based defenses in mitigating adversarial perturbations without significantly impacting 

computational efficiency. Our results suggest that integrating secure hardware mechanisms into 

ML devices provides a sustainable path toward ensuring trustworthy and resilient AI systems at 

scale. 
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The rapid advancement of artificial intelligence and machine learning has ushered in an era 

where intelligent devices are integrated into nearly every aspect of modern life. From facial 

recognition in smartphones to autonomous navigation in vehicles, machine learning devices are 

increasingly relied upon for decision-making [1]. However, the growing dependence on these 

systems has also made them attractive targets for adversarial attacks. These attacks exploit the 

sensitivity of ML models to carefully crafted perturbations, resulting in incorrect outputs with 

potentially catastrophic consequences. For instance, an adversarial image designed to deceive an 

autonomous car’s vision system could lead to accidents, while tampered medical diagnostic 

images could lead to incorrect treatment. While valuable, these techniques often fall short when 

deployed in real-world edge devices, where attackers may exploit the hardware itself as an attack 

surface [2]. Hardware vulnerabilities, such as side-channel leakage, power analysis, and fault 

injections, provide additional opportunities for adversaries to bypass software defenses. 

Therefore, a shift toward hardware-level security mechanisms is crucial for ensuring robustness. 

Hardware-level countermeasures are particularly important in edge computing environments, 

where machine learning devices must operate under constraints of energy, latency, and privacy. 

Unlike cloud-based systems, where frequent updates can patch vulnerabilities, embedded ML 

devices deployed in critical infrastructure may remain in service for years without updates. 

Designing hardware that inherently resists adversarial manipulations can therefore provide long-

term resilience. Furthermore, hardware countermeasures often operate independently of the 

model architecture or dataset, making them broadly applicable across various ML applications. 

The significance of studying hardware-level defenses lies in their potential to provide proactive 

and sustainable solutions. Instead of reacting to each new adversarial strategy with an 

algorithmic patch, hardware defenses establish a foundational layer of protection that makes 

attacks fundamentally more difficult to execute [3]. For instance, techniques such as 

randomization in processing units, analog noise injection, and memory encryption can 

significantly increase the cost and complexity of adversarial manipulation. 

This paper explores these ideas by analyzing the effectiveness of hardware-level 

countermeasures through both theoretical and experimental perspectives. By deploying machine 

learning accelerators on FPGA platforms, we evaluate the practical trade-offs between security, 



Pages: 31-38 

Volume-I, Issue-I (2024) 

 
  
 
 
 

Page | 33 Journal of Data & Digital Innovation (JDDI) 
 

latency, and power consumption. Our findings highlight that hardware-level solutions not only 

mitigate adversarial effects but also preserve computational efficiency, offering a promising 

direction for the design of next-generation ML devices [4]. 

II. Related Work 

The field of adversarial attack mitigation has historically centered on software and algorithmic 

methods. Adversarial training, in which models are trained with adversarially perturbed inputs, 

has been one of the most widely studied defenses. While this improves robustness to specific 

attacks, it often leads to reduced generalization and increased training costs. Similarly, defensive 

distillation and input preprocessing approaches have attempted to obscure gradient information 

or sanitize inputs [5]. Despite their promise, these methods tend to degrade under adaptive 

adversaries who are aware of the defense mechanisms. Beyond algorithmic defenses, some 

researchers have explored cryptographic techniques to protect machine learning models. Secure 

multiparty computation (SMC) and homomorphic encryption provide strong theoretical 

guarantees but are impractical for real-time applications due to their computational overhead. 

Trusted execution environments (TEEs), such as Intel SGX, have also been used to protect ML 

computations but remain vulnerable to side-channel attacks and hardware-level faults. These 

limitations underline the need for complementary solutions that integrate security within the 

hardware fabric itself [6]. 

Several studies have investigated fault-tolerant hardware design for ML accelerators, mainly 

targeting reliability and energy efficiency rather than security. Techniques such as redundancy, 

error-correcting codes, and approximate computing have been applied to ensure robust inference 

under hardware faults. Although these approaches were not initially designed for adversarial 

attack mitigation, they provide useful insights into how hardware resiliency can contribute to ML 

robustness. A growing body of research has specifically examined hardware as both an attack 

surface and a defense medium. Adversaries have demonstrated the ability to mount physical 

attacks such as voltage glitches, electromagnetic interference, and power analysis to extract 

model information or induce erroneous outputs. Conversely, defensive strategies such as noise 

injection, circuit-level obfuscation, and secure memory architectures have been proposed as 
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countermeasures. However, there is still a lack of comprehensive evaluations of how these 

techniques impact adversarial robustness in practice. 

Recent advancements in neuromorphic and analog computing also offer new possibilities for 

hardware-level defense. Since adversarial attacks often rely on precise gradient information, 

systems that introduce inherent randomness or analog variability can reduce the effectiveness of 

perturbations. Although promising, these approaches are still in their early stages, and further 

exploration is needed to assess their scalability and integration with existing digital ML 

accelerators. 

III. Proposed Hardware-Level Countermeasures 

Hardware-level countermeasures are designed to make adversarial attacks either infeasible or 

prohibitively expensive by securing the computation and data flow at the device level. One 

promising strategy is the use of randomization within hardware accelerators. Randomized 

execution paths or stochastic rounding in arithmetic units can reduce the determinism of 

computations, making it harder for adversaries to craft precise perturbations. This technique 

ensures that even small adversarial inputs do not propagate consistently through the network. 

Another effective approach is analog noise injection, where controlled noise is introduced into 

the computation pipeline. Unlike random perturbations in training data, hardware-based noise 

directly affects the inference stage. Properly tuned noise levels can significantly degrade the 

success rate of adversarial attacks without compromising model accuracy under normal inputs. 

Experimental studies have shown that injecting Gaussian noise at intermediate layers can reduce 

adversarial success rates by more than 40% with minimal accuracy loss [7]. 

Secure memory architectures also play a vital role in countering adversarial attacks. Techniques 

such as memory encryption and access obfuscation can prevent adversaries from tampering with 

model parameters or input data stored in local memory. For example, deploying lightweight 

encryption schemes at the on-chip cache level can protect sensitive weights against physical 

tampering. Furthermore, memory access randomization prevents attackers from predicting or 

exploiting data flow patterns during inference. In addition to memory protection, fault-resilient 
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design strategies contribute to adversarial robustness. Since many adversarial attacks rely on 

exploiting the sensitivity of ML computations, building redundancy into critical hardware paths 

can counteract malicious perturbations [8]. For instance, duplicating computations across 

multiple processing units and using majority voting can ensure consistent outputs even under 

adversarially induced disturbances. Although redundancy increases resource utilization, careful 

architectural optimization can balance security and efficiency. 

Finally, hardware accelerators with built-in adversarial detection mechanisms can provide active 

defense. By monitoring input distributions and internal activations in real time, hardware can 

flag anomalies indicative of adversarial inputs. Lightweight detection circuits integrated into 

accelerators can alert higher-level systems or trigger fallback mechanisms, providing an 

additional layer of resilience. This proactive strategy ensures that even if adversarial inputs 

bypass model-level defenses, hardware safeguards can still mitigate their impact. 

IV. Experimental Setup and Results 

To validate the effectiveness of hardware-level countermeasures, we implemented a series of 

experiments using FPGA-based machine learning accelerators. The target models included a 

convolutional neural network (CNN) trained on the MNIST dataset and a deeper CNN trained on 

CIFAR-10. Both models were deployed on Xilinx FPGAs with custom hardware modifications 

to incorporate noise injection, randomized execution, and memory encryption mechanisms. 

Adversarial attacks were generated using the Fast Gradient Sign Method (FGSM) and Projected 

Gradient Descent (PGD), two widely recognized attack strategies. Baseline models without 

hardware defenses were evaluated first, demonstrating vulnerability to adversarial inputs with up 

to 95% attack success rates under FGSM perturbations of magnitude ε=0.3 on MNIST. Similar 

vulnerabilities were observed in the CIFAR-10 model, where PGD attacks reduced classification 

accuracy to below 20%. 

When hardware-level countermeasures were applied, a significant improvement in robustness 

was observed. For the MNIST model, analog noise injection reduced adversarial success rates by 

47%, while randomized execution paths further reduced them by an additional 28%. Memory 
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encryption and access randomization provided an indirect but measurable improvement, 

reducing susceptibility to physical attacks and preventing direct tampering [9]. Overall, 

combining these techniques restored classification accuracy under adversarial conditions to over 

80% on MNIST and 70% on CIFAR-10, representing a substantial resilience gain. Power and 

latency overheads were also measured to evaluate the trade-offs of implementing hardware 

defenses. Noise injection introduced less than 5% additional latency, while randomized 

execution paths increased power consumption by approximately 8%.  

Memory encryption incurred the highest overhead, increasing latency by nearly 12%, but 

remained acceptable given the enhanced security benefits. Importantly, normal input 

classification accuracy remained virtually unchanged, confirming that the countermeasures did 

not degrade baseline performance [10]. These experimental results demonstrate the viability of 

hardware-level countermeasures in real-world scenarios. While no single technique offers 

complete protection, combining multiple defenses creates a layered architecture that significantly 

raises the bar for adversaries. Furthermore, the relatively low overheads suggest that hardware 

countermeasures can be integrated into edge and embedded ML devices without sacrificing 

efficiency. 

V. Discussion 

The experimental findings highlight the potential of hardware-level countermeasures as a 

sustainable defense strategy against adversarial attacks. Unlike purely software-based solutions, 

which can often be reverse-engineered or bypassed, hardware defenses introduce inherent 

unpredictability that fundamentally disrupts attack strategies. The success of noise injection and 

randomized execution in our experiments confirms that perturbation-based attacks lose 

effectiveness when deterministic processing pathways are compromised. One of the most notable 

observations is the synergistic effect of combining multiple countermeasures. While noise 

injection alone improved resilience, its effectiveness was significantly amplified when combined 

with randomized execution and secure memory mechanisms[11]. This layered defense approach 

parallels principles of cybersecurity, where multiple barriers collectively reduce the likelihood of 
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successful intrusion. Importantly, the combined strategies did not excessively increase resource 

utilization, underscoring their practicality for edge deployment. 

The overhead analysis suggests that integrating security at the hardware level does not 

necessarily conflict with performance goals. With careful architectural design, the latency and 

power penalties introduced by countermeasures remain within acceptable limits for most real-

time applications. This is particularly relevant for edge AI devices in autonomous systems, 

where both robustness and efficiency are critical. Hardware designers can thus prioritize security 

without compromising system responsiveness. Another key insight is the potential applicability 

of hardware-level defenses across diverse ML architectures and datasets. Unlike algorithmic 

defenses, which often require retraining or modification of specific models, hardware 

countermeasures operate at the computation level and can therefore protect a wide range of 

applications. This universality makes them highly attractive for deployment in heterogeneous 

environments, where multiple ML models coexist on shared hardware. Despite these promising 

outcomes, several challenges remain. Hardware countermeasures cannot fully eliminate 

adversarial risks, particularly when adversaries combine physical and algorithmic strategies. 

Additionally, widespread adoption will require standardization of secure hardware designs and 

cost-effective integration into commercial devices. Further research is also needed to evaluate 

the long-term reliability of such defenses under evolving attack methodologies. 

VI. Conclusion 

This research has demonstrated that hardware-level countermeasures offer a promising path 

toward mitigating adversarial attacks in machine learning devices. By incorporating mechanisms 

such as randomized execution, analog noise injection, and secure memory architectures, ML 

systems gain a resilient foundation that complements software-level defenses. Our experimental 

evaluation on FPGA-based accelerators confirmed that these techniques substantially reduce 

adversarial success rates while maintaining computational efficiency. Although challenges 

remain in balancing cost, scalability, and integration, the evidence strongly suggests that 

embedding security within hardware is an effective and sustainable strategy. Ultimately, 
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hardware-level countermeasures elevate the trustworthiness of ML devices, ensuring their 

reliable deployment in critical real-world applications where resilience is non-negotiable. 
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