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Abstract 

The increasing demand for machine learning (ML) applications across mobile, embedded, and 

edge computing devices has highlighted the importance of energy-efficient circuit design for 

low-power accelerators. Traditional machine learning accelerators, while powerful, often suffer 

from high power consumption and thermal inefficiencies that limit their adoption in energy-

constrained environments. This paper explores strategies for designing energy-efficient circuits 

tailored to low-power ML accelerators, focusing on reducing dynamic and static power 

consumption while maintaining computational throughput. Through a combination of voltage 

scaling, approximate computing, memory optimization, and innovative circuit-level techniques, 

this research investigates how energy efficiency can be achieved without significantly 

compromising model accuracy. Experimental evaluations conducted using a custom-designed 

hardware prototype and simulated workloads from convolutional neural networks (CNNs) and 

transformer models demonstrate notable reductions in energy consumption, achieving up to 45% 

improvement over baseline accelerator designs. The findings provide insights into balancing 

efficiency, scalability, and accuracy in next-generation machine learning hardware. 

Keywords: Energy-efficient circuits, low-power design, machine learning accelerators, 

approximate computing, memory optimization, voltage scaling 
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The proliferation of machine learning algorithms in diverse application domains such as 

healthcare monitoring, autonomous vehicles, and smart IoT devices has driven an urgent need 

for efficient hardware accelerators. While cloud-based computation offers scalability, local on-

device processing is essential to reduce latency, improve privacy, and enhance user experience. 

However, one of the primary challenges associated with deploying ML models on portable and 

embedded devices is the excessive energy consumption of hardware accelerators. This challenge 

is exacerbated by the increasing complexity of deep learning models, which demand high 

memory bandwidth and intensive computational resources. Energy efficiency in hardware design 

is a multidimensional problem involving trade-offs between circuit design choices, memory 

hierarchy, and algorithmic constraints. A fundamental consideration is the balance between 

maintaining computational accuracy and reducing energy overhead. While software-level 

optimizations such as quantization and pruning are well-documented, their impact is constrained 

if the underlying circuit design is not energy-aware [1]. Hence, there is a growing body of 

research dedicated to circuit-level innovations that directly address energy efficiency. 

Machine learning accelerators rely heavily on parallelism, which, while effective for 

performance, often increases leakage power and switching activity in circuits. This necessitates 

novel approaches that can reduce redundant operations and minimize energy dissipation at the 

transistor level. Additionally, the growing popularity of on-device inference requires hardware 

designs that can sustain prolonged workloads without overheating or requiring large batteries. 

The motivation for this research lies in bridging the gap between high-performance ML 

accelerators and energy-efficient, low-power circuit designs suitable for embedded contexts. 

Recent advances in approximate computing, dynamic voltage scaling, and in-memory processing 

have shown promise in reducing power usage [2]. However, these techniques need careful 

integration into accelerator architectures without significantly degrading model inference 

accuracy.  

The design space is vast, and systematic evaluations are required to identify optimal circuit 

strategies that maximize energy savings while delivering acceptable performance metrics. This 

paper contributes to this ongoing effort by proposing, analyzing, and experimentally validating 

several circuit-level methods for enhancing energy efficiency in ML accelerators. This study 
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builds upon prior works in energy-aware circuit design, but it distinguishes itself by combining 

multiple complementary techniques into a cohesive framework. The research emphasizes 

empirical validation using both real hardware and benchmark ML models, offering a 

comprehensive perspective that bridges theoretical design with practical deployment scenarios. 

II. Methodology 

The proposed methodology for energy-efficient circuit design integrates multiple hardware-level 

optimizations to minimize power consumption without compromising computational 

performance. First, dynamic voltage and frequency scaling (DVFS) techniques were 

incorporated to adaptively adjust the accelerator’s operating conditions based on workload 

intensity. By reducing supply voltage during low-computation phases, significant energy savings 

were achieved [3]. The design also adopted clock-gating strategies, which selectively disable 

inactive circuit blocks, thereby reducing unnecessary switching activity. Approximate computing 

formed another cornerstone of the methodology. Since machine learning models are inherently 

error-tolerant, approximate multipliers and adders were introduced in certain non-critical 

computational paths. This allowed for reduced transistor count and simplified circuit structures, 

lowering dynamic power consumption. To mitigate accuracy loss, approximation was selectively 

applied to convolutional layers of CNNs where redundancy in feature maps reduces sensitivity to 

minor computational errors [4]. 

Memory optimization played a critical role in this design. Conventional ML accelerators are 

bottlenecked by energy-intensive memory accesses, especially when dealing with large-scale 

deep learning models. To address this, on-chip SRAM buffers were optimized with multi-banked 

architectures, enabling parallel memory access with reduced latency. Additionally, near-memory 

computation units were integrated, reducing the need for frequent off-chip DRAM 

communication. This significantly improved data locality and reduced memory-related power 

consumption. The methodology also leveraged transistor-level innovations, including multi-

threshold CMOS (MTCMOS) for leakage power reduction and adaptive body biasing for 

dynamic control of circuit performance. These techniques ensured that circuits could remain idle 

at low-leakage states when computation was not required. By combining these methods with 

voltage scaling, the design effectively tackled both static and dynamic energy components. 
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Finally, the proposed methodology was validated using a hardware prototype built on FPGA and 

simulated through Synopsys Design Compiler and Cadence tools for power estimation. Standard 

machine learning benchmarks, including CIFAR-10 CNN inference and transformer-based 

natural language processing tasks, were deployed on the accelerator. The experiments compared 

the proposed energy-efficient circuit design against baseline accelerators to quantify 

improvements in energy consumption, computational throughput, and model accuracy. 

III. Experimental Setup 

The experimental framework was carefully designed to assess the impact of proposed circuit-

level optimizations on machine learning workloads. An FPGA-based prototype served as the 

primary platform, providing flexibility in circuit design evaluation while enabling real-time 

hardware measurements [5]. The FPGA board was configured with custom-designed accelerator 

blocks that implemented approximate arithmetic units, DVFS controllers, and optimized SRAM 

banks. Power measurement modules were integrated to capture dynamic and static power during 

inference operations. For simulation-based analysis, Cadence and Synopsys EDA tools were 

used to synthesize and simulate circuit designs under different operating conditions. The 

simulations focused on gate-level power estimation, transistor switching activity, and leakage 

characteristics across various workloads. The goal was to compare baseline accelerator designs 

with the proposed energy-efficient circuits across identical computational scenarios. To enhance 

reliability, multiple runs were conducted under varying supply voltages and workloads [6]. 

The evaluation benchmark consisted of two categories: vision-based and language-based 

machine learning tasks. For computer vision, convolutional neural networks trained on CIFAR-

10 and Image Net datasets were deployed. For natural language processing, transformer-based 

models, including BERT inference, were tested. These tasks were chosen due to their 

computational intensity and wide applicability in real-world applications such as mobile vision 

systems and on-device speech recognition. In addition, the system’s thermal profile was recorded 

to evaluate improvements in heat dissipation. Memory access patterns were analyzed to measure 

the reduction in off-chip DRAM calls due to the proposed memory optimization techniques. 

Collectively, these metrics provided a holistic assessment of the accelerator’s energy efficiency. 
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The experimental setup also considered long-term operational scenarios to simulate realistic 

deployment. Continuous inference workloads were executed for extended durations to assess 

circuit reliability and energy scaling under thermal constraints. This ensured that the proposed 

designs were not only effective in short bursts but also robust for sustained edge device 

operation. By combining FPGA measurements with simulation-based analysis, the experimental 

setup provided a comprehensive platform for validating the effectiveness of the proposed design 

strategies. 

IV. Results and Discussion 

The experimental results demonstrated significant improvements in energy efficiency compared 

to baseline ML accelerator designs [7]. When evaluated on CNN inference tasks, the proposed 

circuit design achieved a 45% reduction in overall energy consumption, primarily due to the 

combined effects of voltage scaling and approximates arithmetic units. In transformer-based 

workloads, where memory access dominates computation, the optimized SRAM architecture 

reduced off-chip DRAM calls by 38%, resulting in substantial energy savings. These 

improvements validated the effectiveness of memory-centric circuit design strategies. Despite 

incorporating approximate computing, the degradation in model accuracy was minimal, 

averaging only 1.2% across tested benchmarks. This confirmed that selective approximation in 

convolutional layers and attention mechanisms can significantly reduce energy without 

compromising usability. Moreover, adaptive body biasing and MTCMOS-based leakage 

reduction techniques ensured that idle states consumed negligible power, contributing to 

improved overall energy efficiency [8]. The circuit maintained a balanced trade-off between 

performance and power savings, making it suitable for embedded AI deployments. 

Thermal evaluations showed that the proposed design reduced peak operating temperatures by 

12°C compared to the baseline. This is a critical advantage for portable devices, as reduced 

thermal stress enhances system reliability and battery lifespan. Throughput measurements 

indicated that, despite energy savings, the accelerator sustained competitive performance, 

achieving 92% of the throughput of high-performance baseline accelerators. This suggests that 

energy efficiency can be realized without drastically sacrificing speed. The analysis also revealed 

interesting insights into workload dependency [9]. For instance, CNN workloads exhibited 
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higher tolerance to approximate computing compared to transformer-based models, which 

showed slightly higher sensitivity to arithmetic simplifications. This finding underscores the 

need for workload-aware energy-efficient circuit design, where approximation levels and voltage 

scaling parameters are tailored to specific applications [10]. 

Overall, the results confirmed that a holistic circuit design approach—integrating DVFS, 

approximate arithmetic, optimized memory, and transistor-level leakage reduction—provides 

substantial energy savings for machine learning accelerators. The findings highlight the potential 

of these techniques to enable widespread deployment of AI models on low-power, resource-

constrained devices [11]. 

V. Conclusion 

This study demonstrated that energy-efficient circuit design is a key enabler for low-power 

machine learning accelerators in edge and embedded applications. By integrating complementary 

techniques such as voltage scaling, approximate arithmetic, memory optimization, and leakage 

control, the proposed design achieved substantial reductions in power consumption while 

maintaining high computational throughput and accuracy. Experimental results validated the 

effectiveness of this approach, with energy savings up to 45% and minimal accuracy loss across 

CNN and transformer benchmarks. The findings highlight the importance of holistic circuit-level 

strategies in shaping the next generation of AI hardware, paving the way for scalable, low-

power, and thermally sustainable accelerators suitable for mobile and IoT devices. 
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