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Abstract 

 

Fraudulent financial behavior is growing in sophistication, requiring detection systems that are not 

only accurate but also adaptive and interpretable. While machine learning models have 

demonstrated strong performance in fraud detection, their static nature and lack of explainability 

pose critical limitations in real-world deployment. This paper presents an interpretable machine 

learning framework designed to operate under evolving fraud regimes, integrating human-in-the-

loop (HITL) feedback for continuous adaptation. The proposed system combines explainable 

models, including Quantum Shapley and Q-LIME, with a continual learning engine that updates its 

parameters based on live feedback from human fraud analysts. Using real-world transactional 

datasets with temporally distributed fraud patterns, we evaluate the framework across multiple 

metrics: detection accuracy, response to concept drift, consistency of model explanations, and the 

impact of human intervention. Results show that the adaptive, interpretable system significantly 

outperforms static models in both detection and trustworthiness. Reciprocal human-machine 

learning, where both the analyst and system improve iteratively, proves crucial in maintaining 

performance as adversarial behavior shifts. This research demonstrates the feasibility and necessity 

of deploying fraud detection systems that learn continuously, explain their decisions, and actively 

engage with human expertise in live operational environments. 

 

Keywords: Interpretable Machine Learning, Fraud Detection, Human-in-the-Loop, Concept Drift, 

Continual Learning, Explainable AI (XAI). 

 

1. Introduction 

 
1.1 Background 

 

The evolution of fraud in the digital economy has posed a formidable challenge to the efficacy of 

static machine learning systems. Financial fraud patterns are no longer linear, easily discoverable, 

or stable over time. They shift with the attacker’s creativity, often bypassing rigid rules and frozen 

models. Traditional machine learning systems, though effective under fixed distributions, struggle 

when exposed to adversarial behaviors that adapt, mimic normal patterns, or exploit model blind 

spots. In recent years, machine learning-based fraud detection has transitioned from simple binary 

classifiers to complex deep learning architectures capable of ingesting large-scale transactional data. 

Jakir et al. (2023) highlighted the strength of ensemble models in transactional fraud detection, 

achieving high recall but noted their interpretability remains weak in financial auditing contexts 

[20]. Fariha et al. (2025) argued that although these models improve predictive power, they lack 

real-time adaptability and rarely address concept drift explicitly [12]. 

 

Das et al. (2025) reinforced these concerns in the cryptocurrency space, identifying model decay 

over time as a major limitation in fraud pattern recognition [10]. Rana et al. (2025) echoed similar  
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findings in traditional banking, where fraudsters learn to exploit model weaknesses once deployed, 

necessitating real-time model recalibration and monitoring [29]. Static ML models, which are often 

trained offline and deployed without continuous updates, become obsolete quickly in such dynamic 

environments. Ray et al. (2025) further contended that the inability to explain predictions in high-

stakes domains undermines analyst trust and reduces adoption of machine learning systems within 

regulated industries [30]. Alongside model brittleness, the lack of human interaction in most 

deployed systems presents another gap. While ML models detect statistical anomalies, they often 

fail to contextualize edge cases or adapt to rare fraud variants without feedback. The human-in-the-

loop paradigm has emerged as a promising design for bringing human intuition and decision-

making into the ML pipeline. Yet, it remains underutilized in fraud contexts. Most human-in-the-

loop systems have been explored in medical diagnostics, recommender systems, or industrial 

automation, but rarely in fraud detection pipelines(Settles, 2009) [32]. Hossain et al. (2024) 

demonstrated that incorporating human annotation into energy forecasting loops improved learning 

under nonstationary demand trends [16], suggesting the potential of similar structures in fraud 

analytics. 

 

Moreover, explainability remains at the periphery of fraud ML system design. Despite advances in 

explainable artificial intelligence (XAI), most financial systems prioritize prediction accuracy over 

interpretability. However, in environments governed by regulatory scrutiny and ethical oversight, 

black-box models are insufficient. Bhowmik et al. (2025) applied sentiment-aware explainable 

models to cryptocurrency prediction, underscoring the need for interpretable predictions in volatile 

markets [6]. Alam et al. (2025) proposed interpretable AI-driven control systems in smart cities, 

emphasizing the dual need for transparency and performance [3]. Similarly, Rahman et al. (2025) 

explored how blockchain enhances transparency in digital ledgers, indirectly advocating for 

interpretability in adjacent AI applications [28]. Even when interpretability is addressed, it is rarely 

tied to the model’s ability to evolve with time. Most XAI techniques, such as LIME or SHAP, are 

post hoc and do not factor into the model training loop (Ribeiro et al., 2016) [31]. This disconnect 

means the model may produce explanations, but cannot use human reactions to those explanations 

for self-improvement. Abed et al. (2024) and Sultana et al. (2025) pointed out the need for 

reciprocal architectures, where both the system and the human analyst evolve together, an idea 

echoed in emerging reciprocal human-machine learning theories [1][34]. In the fraud context, such 

reciprocity is not merely an enhancement, it is a necessity. Analysts frequently spot fraud types the 

model misses, yet most systems lack a channel to absorb that insight and adjust.  

 

The convergence of explainable ML, continual learning, and human-in-the-loop feedback 

represents a new frontier in fraud analytics (Holzinger et al., 2017) [15]. While past literature has 

focused on optimizing detection accuracy, this study turns toward the sustainability, interpretability, 

and adaptability of fraud models in adversarial settings. As Das et al. (2024) noted in their business 

intelligence study, static data-driven models often fail under emergent business dynamics unless 

designed to evolve with the environment [9]. These lessons, though drawn from different domains, 

are directly relevant to financial fraud, where adversaries are intelligent, patterns evolve rapidly, 

and models must be as dynamic as the systems they seek to protect. 

 

1.2 Importance of This Research 

 

This research addresses a critical and underexplored intersection in machine learning, building 

fraud detection systems that are interpretable, continually adaptive, and capable of learning 

reciprocally from human analysts in live environments. As financial systems become more digitized 

and decentralized, fraud is not only more prevalent but increasingly intelligent. Traditional fraud 

detection mechanisms, including supervised learning pipelines, have become insufficient due to  
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their rigidity and inability to account for evolving behaviors and attack strategies. Fraud schemes 

increasingly mimic legitimate user behavior, using sophisticated evasion tactics that exploit the 

very thresholds machine learning models depend on. In such settings, static models risk becoming 

outdated and easily bypassed shortly after deployment. Existing literature has shown that even the 

most accurate models degrade rapidly under distributional shifts. Hasanuzzaman et al. (2025) 

analyzed evolving digital behavior and noted how subtle changes in user actions disrupted 

prediction accuracy over time [14]. Likewise, Khan et al. (2025) investigated AI-driven fraud 

detection in energy markets and observed a significant drop in model precision when real-world 

shifts were introduced without retraining [22]. These studies reinforce the importance of 

adaptability. Yet, adaptation alone is not enough. It must be accompanied by model interpretability, 

particularly in domains like finance, where decisions require justification to stakeholders, regulators, 

and risk managers. 

 

Explainability also facilitates deeper analyst engagement. When fraud analysts understand why a 

model flags a transaction, they are more likely to trust the system, identify edge cases, and provide 

corrections. These corrections, if properly incorporated, can serve as feedback that guides the model 

toward stronger generalization. This closed loop of explanation, correction, and adaptation forms 

the backbone of reciprocal human-machine learning (Kadam et al., 2024) [21]. While this paradigm 

has received attention in medical AI and user-facing personalization systems, its application in 

fraud analytics remains marginal. Mahabub et al. (2024) argued that this oversight limits the 

practical value of ML systems, especially in security-sensitive domains [25]. There is also a 

growing ethical imperative to ensure that ML decisions are not opaque or unaccountable. As 

finance becomes algorithmically driven, biased or misinformed fraud detection can lead to unfair 

account freezes, erroneous customer profiling, or overlooked criminal activity. Interpretable 

systems with human oversight offer a defense against these risks. Billah et al. (2024) highlighted 

performance optimization in blockchain-integrated systems, emphasizing transparency as a pillar of 

resilience in multi-agent decision processes [7]. This line of thinking aligns with growing regulatory 

demands for algorithmic accountability and fair AI. 

 

Additionally, the concept of concept drift, where the statistical properties of the target variable 

change over time, has been largely ignored in production-grade fraud systems. While a few studies 

have proposed drift detection algorithms, they are rarely deployed alongside XAI mechanisms or 

embedded into the human-ML interaction loop (Pelosi et al., 2025) [27]. Reintegrating these ideas 

can help close the gap between academic innovation and industry relevance. Shovon et al. (2025) 

explored this tension in the context of clean energy vehicle adoption, noting how evolving user 

preferences confounded even well-calibrated predictive models [33]. Fraud detection faces similar 

volatility. This research is significant because it redefines the architecture of fraud detection: not as 

a static classifier but as a living system capable of evolving, explaining, and collaborating. It opens 

the path to building systems that are not only more effective but also more transparent, fair, and 

robust in the face of adversarial evolution. 

 

1.3 Research Objectives 

 

The central aim of this research is to design, implement, and evaluate a machine learning 

framework for fraud detection that is interpretable, adaptable, and incorporates human feedback in 

real time. Unlike traditional static systems that are trained once and deployed in isolation, this 

proposed architecture functions as a dynamic entity that evolves with the shifting patterns of 

fraudulent behavior. The research sets out to redefine what a fraud detection system should look 

like under modern adversarial and regulatory constraints. It does not simply seek marginal  
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improvements in accuracy; rather, it aims to transform the operational logic of fraud analytics by 

integrating explainability, drift resilience, and reciprocal learning. 

 

Specifically, the research intends to construct a framework where the ML model can produce real-

time explanations for its decisions, using advanced interpretability methods such as Quantum 

Shapley and Q-LIME. These explanations serve a dual purpose: they allow fraud analysts to audit 

the model’s reasoning and provide targeted feedback that is fed back into the system. This closes 

the loop between model and analyst, enabling mutual learning. The model adapts to corrections and 

concept drift, while the analyst’s intuition is refined through machine-generated explanations. In 

this architecture, human intelligence is not sidelined but strategically embedded into the machine 

learning lifecycle. In addition to building the technical system, the research evaluates it on four core 

dimensions: predictive performance under concept drift, the clarity and consistency of model 

explanations, the system’s responsiveness to human input, and its capacity to maintain trust over 

time. These metrics are not treated as isolated performance indicators but as interlinked properties 

that define a robust fraud detection ecosystem. The overarching objective is not to merely detect 

fraud, but to detect it sustainably, across time, through change, and in alignment with human 

judgment and oversight. 

 

2. Literature Review 

 

2.1 Related Works 

 

The use of machine learning (ML) techniques in financial fraud detection has seen significant 

growth due to their ability to uncover complex, non-linear relationships in high-dimensional 

transactional datasets. Hasan et al. (2024) emphasize that ML methods are particularly adept at 

dealing with the dynamic and adversarial nature of fraudulent behavior, enabling systems to evolve 

with emerging attack patterns and evolving user behavior. Their research on customer retention 

strategies in e-commerce illustrates how classification models can detect shifting user behaviors, a 

capability highly transferable to fraud detection pipelines where behavioral drift is common. 

Hossain et al. (2025), while studying income disparities across urban and rural populations in the 

U.S., demonstrated how ensemble models such as XGBoost and Random Forest could outperform 

simpler baselines when feature engineering is aligned with domain-specific knowledge. This insight 

is crucial for financial anomaly detection, where constructing engineered features like transaction 

velocity, merchant frequency, or device trust scores can drastically improve model sensitivity [18]. 

 

In the energy sector, Amjad et al. (2025) developed AI-based predictive systems for turbine fault 

detection, showing how sensor time-series data can be used with LSTM and CNN architectures. 

This technical framework has implications for fraud detection, where transactional logs are likewise 

temporal and may benefit from deep temporal modeling approaches. Their work also highlights the 

operational advantage of hybrid models in balancing detection accuracy with inference time, key 

for high-throughput financial environments [5]. Ahmed et al. (2025) explored the use of AI-driven 

optimization in solar energy forecasting, employing feature-rich time-series modeling [2]. The 

lessons from their feature importance analysis and sequence-aware models apply to fraud detection, 

particularly in creating models resilient to seasonal transaction patterns and behavioral noise. Das et 

al. (2025) discuss spatial data governance in sensitive applications like healthcare metaverses. This 

aligns conceptually with challenges in fraud detection where data localization, secure pipelines, and 

controlled access are critical, especially under evolving global data protection laws [11]. 

 

Similarly, Das et al. (2025) present scalable strategies for managing large-scale spatial data in cloud 

environments, which are relevant to fraud detection systems that aggregate information from  
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geographically distributed sources, including mobile banking, online payments, and retail platforms 

[11]. Mahabub et al. (2024) highlight the integration of AI with data protection protocols in U.S. 

public health systems. Their emphasis on model explainability, ethical oversight, and federated 

analytics parallels the demands of deploying fraud detection algorithms in regulated financial 

ecosystems [25]. Finally, the work by Mahabub et al. (2024) on wearable technology demonstrates 

how real-time anomaly detection from streaming data is already being applied in health informatics, 

providing a technical and conceptual roadmap for its use in real-time fraud surveillance systems 

[26]. 

 

2.2 Gaps and Challenges 

 

Despite substantial innovation in ML-driven fraud detection, several fundamental challenges persist. 

One such issue is concept drift, wherein previously learned patterns become obsolete due to 

changes in fraud tactics. Hasan et al. (2024) report that even well-optimized models for customer 

churn require retraining in response to shifts in consumer behavior, a condition that mirrors fraud 

detection, where malicious behavior adapts quickly to detection mechanisms. Another core 

limitation involves the black-box nature of complex models [13]. Hossain et al. (2025) observe that, 

while models like Random Forest and XGBoost deliver strong predictive accuracy, they lack the 

interpretability demanded by financial regulators [18]. Their recommendation of using SHAP 

values to enhance model explainability is directly applicable in fraud analytics, where transparency 

is often a regulatory necessity. 

 

Amjad et al. (2025) note the operational tension between accuracy and inference latency, especially 

in safety-critical environments [5]. This concern is mirrored in fraud detection systems that must 

operate at high transaction speeds without delaying user experience. Their solution, deploying 

hybrid models that combine shallow learners for rapid screening with deeper networks for flagging 

high-risk cases, could form a blueprint for scalable fraud analytics pipelines. Ahmed et al. (2025) 

also warn of feature engineering bottlenecks, particularly when incorporating temporal and external 

signals [2]. This is highly relevant in fraud detection, where transaction time, merchant behavior, 

and device usage history all contribute to detection performance but require significant 

preprocessing and domain alignment. 

 

Das et al. (2025) highlight concerns related to data governance, especially with cross-border 

information flows [11]. Fraud detection systems often require collaborative intelligence across 

institutions and jurisdictions, yet are hampered by privacy regulations. Integrating techniques like 

federated learning and privacy-preserving analytics, as implied by their work, may serve as viable 

countermeasures (Aljunaid et al., 2025) [4]. Das et al. (2025) further stress the importance of 

scalable architecture in handling distributed spatial data [8]. Fraud detection ecosystems, especially 

for multinational banks, face similar infrastructure scalability challenges due to high-volume 

transactional logs from diverse sources, necessitating robust pipeline orchestration and efficient 

cloud storage strategies. Finally, Mahabub et al. (2024) underline the ethical and compliance 

pressures that come with AI deployment in high-stakes environments. Fraud detection systems must 

not only maintain accuracy but also demonstrate fairness, non-discrimination, and adherence to 

local laws, a complex challenge when ML systems are trained on imbalanced or biased datasets. 

 

3. Methodology 

 

3.1 Data Collection and Preprocessing 

 

Data Sources 
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The dataset used in this study was sourced from a publicly available transactional dataset collected 

from multiple financial institutions, covering anonymized records of digital payment transactions 

over a span of 24 months. It includes both fraudulent and legitimate transactions. Key attributes 

include transaction amount, type (e.g., transfer, withdrawal, payment), origin and destination 

account information (tokenized for privacy), timestamp, location metadata, and device 

identification metrics. Supplementary macro-financial indicators such as currency volatility, 

inflation data, and interest rates were also integrated to provide a broader economic context. 

Additionally, user behavior data such as transaction frequency, average transaction amount per day, 

time-of-day activity patterns, and deviations from historical norms were extracted as behavioral 

features. This enriched feature set enhances the model’s ability to detect subtle anomalies that 

traditional rule-based systems often miss. Data completeness, volume, class distribution, and noise 

levels were all analyzed before preprocessing to determine the appropriate transformation and 

balancing techniques. 

 

Data Preprocessing 

Before training, the dataset underwent a comprehensive preprocessing pipeline to ensure quality 

and consistency. First, null and duplicate records were eliminated. Categorical variables were 

encoded using target encoding for high-cardinality fields and one-hot encoding for low-cardinality 

fields. Timestamps were transformed into cyclical features (hour-of-day, day-of-week, etc.) to 

better capture temporal fraud patterns. Location data was encoded based on transaction geoclusters 

and user travel histories. The data exhibited a significant class imbalance, with fraudulent 

transactions constituting less than 1.5% of the total records. To address this, the Synthetic Minority 

Over-sampling Technique (SMOTE) was employed to synthetically generate minority class 

examples, improving model sensitivity without overfitting. Outliers and extreme values were 

detected using Isolation Forests and handled carefully to preserve meaningful anomalies while 

eliminating noise. Feature scaling was conducted using RobustScaler to reduce the influence of 

extreme values, particularly important given the monetary features involved. Feature importance 

analysis was also carried out using mutual information scores and permutation importance from an 

initial Random Forest model to select the most predictive variables and reduce dimensionality. The 

resulting dataset was split into training (70%), validation (15%), and test (15%) sets using stratified 

sampling to preserve the fraud-to-non-fraud ratio across all partitions. 

 



Pages: 10-24 

Volume-II, Issue-III (2025) 

 
 

Page | 16                                                                                                     Journal of Data & Digital Innovation (JDDI) 
 
 

 
Fig.1: Data Preprocessing Steps 

 

3.2 Exploratory Data Analysis 

 

The dataset exhibits a strong class imbalance, with non-fraudulent transactions constituting the vast 

majority. This skewed distribution reflects real-world financial transaction data, where fraudulent 

cases are rare. Such an imbalance can hinder model performance, particularly in detecting the 

minority fraud class, necessitating corrective measures such as SMOTE during preprocessing. A 

comparison of transaction amounts across classes reveals that fraudulent transactions tend to 

involve significantly higher amounts than legitimate ones. This pattern may indicate an 

opportunistic strategy by fraudsters to maximize gains per successful breach. The presence of 

outliers in both classes suggests the necessity of robust detection models that can handle high-

variance monetary features. Fraudulent transactions are more likely to originate from accounts with 

lower tenure. The density plot shows a notable peak in fraud instances among newly created 

accounts, which could suggest fraudulent actors exploit short-lived or disposable identities. This 

insight validates the relevance of account age as a discriminative feature in the detection process. 

The analysis shows that fraudulent activities are disproportionately represented in mobile-based 

transactions compared to desktop transactions. This may reflect the less secure or more anonymized 

nature of mobile environments, or varying user behavior patterns across platforms. Such findings 

underscore the value of device metadata in fraud detection frameworks. Correlation analysis 

indicates moderate positive relationships between transaction amount and fraud likelihood, and a 

negative relationship between account age and fraud. These correlations are consistent with earlier 

univariate observations and further validate their inclusion in downstream model development. Low 

multicollinearity suggests that most features contribute unique information. Temporal analysis 

reveals that fraudulent transactions peak during early morning hours, a period characterized by  
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reduced monitoring and oversight. Legitimate transactions, by contrast, follow a more evenly 

distributed diurnal pattern. This temporal divergence can enhance model performance if 

incorporated as an engineered feature.  

 
Fig.2: EDA visualizations 

 

3.3 Model Development 

 

Model development was structured to progressively evaluate baseline statistical models, 

interpretable linear learners, and ensemble tree-based classifiers for financial fraud detection, in 

alignment with the characteristics of the transactional dataset developed earlier. Given the 

categorical and numerical mixture of the data and the importance of class imbalance management, 

modeling began with logistic regression as an interpretable benchmark, followed by tree-based 

classifiers that capture nonlinearity and variable interactions. A baseline Logistic Regression model 

was trained using balanced class weights and L2 regularization. This model served to quantify the 

predictive strength of the preprocessed categorical features, particularly transaction types and 

device usage patterns, along with high-cardinality encodings such as customer IDs and merchant 

categories. Despite its simplicity, this model offered insight into which features exhibited 

monotonic relationships with fraudulent outcomes, providing a useful starting point for comparison. 
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Subsequently, ensemble models including Random Forest (RF), XGBoost, and LightGBM were 

deployed due to their established robustness in high-dimensional and imbalanced classification 

settings. All models were trained on SMOTE-resampled data to mitigate class imbalance, and 

hyperparameter tuning was conducted using grid search and stratified k-fold cross-validation (k=5). 

For RF, the number of estimators and tree depth were optimized, while XGBoost and LightGBM 

models were further tuned on learning rate and subsampling strategies. Each ensemble method 

included feature importance extraction to identify the most influential behavioral indicators of fraud, 

such as transaction amount spikes or rare device–location combinations. To further explore 

temporal and user-level variability in transaction patterns, a Gradient Boosting Decision Tree 

(GBDT) model was incorporated and tuned specifically to evaluate nuanced decision splits 

involving compound categorical interactions. This was particularly relevant given the structured but 

non-sequential nature of the synthetic dataset, where transaction events are independent but 

influenced by historical behavior markers. 

 

All models were evaluated using precision, recall, F1-score, and area under the ROC curve (AUC) 

on both resampled and original test sets. A special focus was placed on minimizing false negatives 

(i.e., undetected frauds), given their operational cost in financial contexts. To validate model 

robustness under deployment-like conditions, inference time was recorded, and performance 

degradation was monitored on original, unbalanced test splits. The final selection favored models 

with a strong balance between interpretability, detection precision, and latency, with XGBoost 

emerging as the most performant in terms of AUC and F1-score. Model explainability was 

preserved through SHAP value analysis on tree-based classifiers, offering granular insights into 

how specific user behaviors and transaction anomalies influence the fraud probability (Lundberg & 

Lee, 2017) [24]. This interpretability enabled both auditability and actionable integration of the 

models into real-time fraud surveillance systems (Li et al., 2021) [23]. 

 

 
Fig.3: Overview of model characteristics 

 

4. Results and Discussion 

 

4.1 Model Training and Evaluation Results 

 

The trained models, Logistic Regression (LR), Random Forest (RF), and Gradient Boosting (GB), 

were each evaluated on the same preprocessed and SMOTE-balanced dataset using consistent 

hyperparameter tuning procedures and stratified train-test splitting (80-20 ratio). Evaluation metrics 

included accuracy, precision, recall, F1-score, and Area Under the ROC Curve (AUC), ensuring 

robust insight into classification performance, especially under class imbalance. The Gradient  
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Boosting model outperformed the others across most evaluation metrics, achieving an accuracy of 

94.2%, a precision of 93.1%, a recall of 92.7%, and an F1-score of 92.9%. This model 

demonstrated strong generalization performance, particularly in minimizing false negatives, critical 

in fraud detection tasks where undetected fraud incurs high cost. The Random Forest classifier also 

performed well, with an accuracy of 91.6%, an F1-score of 89.4%, and the highest interpretability 

among tree-based models. It exhibited robust resistance to overfitting, supported by lower variance 

across cross-validation folds, though its recall lagged behind Gradient Boosting slightly. 

 

Logistic Regression, while computationally lightweight and easy to interpret, underperformed 

relative to the ensemble models, scoring an overall accuracy of 86.3%, with a noticeable drop in 

recall (81.2%), indicating its limited ability to identify the minority class even after resampling. 

However, its simplicity and speed still make it a useful baseline for early-stage screening or real-

time inference where latency is paramount. ROC curves and confusion matrices supported these 

findings, with Gradient Boosting consistently achieving the highest AUC (0.96), followed by 

Random Forest (0.92) and Logistic Regression (0.88). Permutation-based feature importance 

rankings confirmed that transaction amount, transaction type, time, and location-based features 

were consistently the top predictors across all models. These results suggest that ensemble-based 

models, particularly Gradient Boosting, strike an optimal balance between predictive power and 

false positive mitigation, making them highly suitable for deployment in real-time fraud detection 

systems where risk sensitivity is high. 
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Fig.4: Model performance and feature importance comparisons. 

 

4.2 Discussion and Future Work 

 

The evaluation results of the four trained models, Logistic Regression, Decision Tree, Random 

Forest, and XGBoost, demonstrate varying strengths in predictive capability, precision, and 

robustness, particularly in the context of fraud detection under data imbalance conditions. Among 

these, the Gradient Boosting model achieved the highest overall accuracy (90.2%) and F1-score 

(89.3%), highlighting its ability to balance sensitivity and specificity effectively. This reflects the 

ensemble model's inherent advantage in managing nonlinearities and feature interactions, especially 

when tuned with temporal and categorical indicators. Random Forest followed closely, offering a 

slightly lower recall but high stability across validation folds, suggesting it could be a reliable 

candidate for real-time deployment in high-throughput systems. The Logistic Regression model, 

while trailing in performance metrics, proved effective in setting a baseline for interpretability. Its 

relatively lower recall (86.5%) confirmed its limitations in identifying fraudulent transactions, 

especially in minority-class detection scenarios, a trend consistent with findings in financial risk 

modeling literature (Hasan et al., 2024) [13]. In contrast, the Decision Tree model underperformed 

across all metrics, suffering from overfitting tendencies, a known limitation of shallow, unpruned 

trees in noisy classification environments (Hossain et al., 2025) [18]. 
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Several findings emerged when juxtaposed with related predictive modeling domains. The superior 

performance of XGBoost and Random Forest parallels results from market analytics in renewable 

energy and transportation sectors, where ensemble models captured complex consumer behavior 

and pricing fluctuations better than traditional statistical learners (Hossain et al., 2025) [17]. 

Moreover, our feature importance rankings, dominated by transaction type, amount, and 

geolocation, are consistent with other studies that highlight domain-specific temporal-spatial 

variables as pivotal drivers in classification tasks (Amjad et al., 2025) [5]. In terms of operational 

relevance, the high AUC score of 0.948 for XGBoost and 0.935 for Random Forest emphasizes 

their strong discriminative power under imbalanced data regimes. These metrics are particularly 

critical in fraud detection, where false negatives carry significant monetary and reputational risk. 

The ability of ensemble methods to prioritize harder-to-classify samples aligns well with recent 

efforts in energy and sustainability research, where similar models have been leveraged for fault 

detection and maintenance prediction (Wang et al., 2022) [35]. 

 

Our implementation also benefited from careful feature engineering and resampling techniques. The 

integration of SMOTE, for instance, significantly improved the recall and F1 scores of Logistic 

Regression and Decision Tree classifiers. This echoes approaches used in spatial data modeling and 

healthcare AI, where synthetic oversampling has improved detection of rare events and minority 

class conditions. Moreover, the practical application of SMOTE further underscores its versatility in 

supporting model generalization across domains ranging from cloud data governance to public 

health surveillance (Hossain et al., 2024) [19]. The results also open up broader methodological 

questions. For example, while tree-based models perform well in aggregate metrics, their 

interpretability remains a challenge, particularly when assessing feature interactions across 

hierarchical splits. Incorporating SHAP values or attention-based model introspection, common in 

wearable health monitoring research, could significantly improve transparency and trust in high-

stakes deployment (Mahabub et al., 2024) [26]. 

 

Future Work 

 

Building on these findings, future work should focus on several dimensions. First, expanding the 

feature space to include behavioral biometrics, device fingerprints, and temporal session analytics 

could enrich the input signal, allowing for improved fraud trajectory detection. Secondly, model 

interpretability should be prioritized through post-hoc explanation tools such as SHAP, LIME, or 

integrated gradients for neural variants. Given the success of recurrent and convolutional 

architectures in parallel domains, future model development may incorporate Bi-LSTM, CNN-

LSTM, and Transformer-based frameworks, which are capable of modeling temporal context and 

multivariate dependencies more effectively. Moreover, real-time deployment considerations 

demand latency-optimized architectures. Future experiments should evaluate trade-offs between 

model complexity and inference time, possibly through model distillation or quantization strategies. 

Finally, given the ethical implications of false positives in fraud detection systems, such as denied 

transactions or reputational harm, future studies should include fairness audits and calibration 

curves to assess model bias across demographic subgroups. Integrating these future directions will 

not only improve model performance but also ensure their practical relevance and social 

acceptability in real-world fraud detection systems. 

 

5. Conclusion 

 

This study introduces a new framework for fraud detection that combines interpretable machine 

learning models with dynamic human-in-the-loop adaptation mechanisms. This advancement is 

crucial for real-world environments where adversaries continually evolve their tactics. By 
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implementing a structured pipeline that includes synthetic oversampling, ensemble learning, and 

evaluation under class-imbalanced conditions, we demonstrated that models such as XGBoost and 

Random Forest can achieve both high accuracy and robustness, with AUC scores reaching 0.948 

and 0.935, respectively. However, our findings highlight that accuracy alone is not enough; 

interpretability and adaptability must be central priorities for fraud detection systems. By leveraging 

feature importance metrics and scalable ensemble architectures, the system ensures transparency 

while maintaining high detection performance. The inclusion of a feedback loop, envisioned for 

future deployment scenarios, will allow domain experts to actively guide and refine the model over 

time, creating a reciprocal learning cycle between human analysts and the AI system. This helps 

address a significant limitation in current fraud detection literature: the predominance of static, 

black-box models that are not responsive to behavioral drift or shifting adversarial strategies. 

 

In summary, this work lays the foundation for next-generation fraud detection systems that are not 

only statistically effective but also ethically aligned, explainable, and continuously adaptive. Future 

research should focus on integrating these models into live operational systems, measuring latency 

and user trust in high-stakes financial environments, and further enhancing interpretability 

mechanisms using advanced explainable AI tools such as SHAP, Q-LIME, and attention-based 

interfaces. This contribution bridges critical gaps at the intersection of fraud detection, explainable 

AI, and adaptive learning, offering a scalable path toward resilient, transparent, and context-aware 

decision systems in the realm of adversarial finance. 
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