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Abstract 

The way wearable tech and AI are coming together is quietly changing how we think about healthcare. 

We're starting to move beyond reactive care and into a space where early warnings and personalized 

interventions aren't just possible, they're practical. In this study, we explored how physiological data from 

wearables, when combined with solid machine learning models, can help flag patient risk more 

effectively, especially for chronic conditions like diabetes, cardiovascular issues, and complications that 

can lead to hospital readmission. We built a layered system that pulls in continuous biosignals from 

wearables and runs them through various predictive models. We used a mix of supervised algorithms like 

Random Forest, XGBoost, and logistic regression, along with some semi-supervised methods for 

situations where labeled data was sparse. The focus during feature engineering was on capturing time-

based patterns, spotting deviations in trends, and incorporating context around the patient. We evaluated 

model performance using ROC-AUC, F1, and precision-recall, testing everything against carefully 

stratified clinical datasets. What stood out was how much better the models performed when wearable 

data was part of the picture. For instance, we saw a noticeable bump in accuracy when it came to early 

signs of irregular heart rate variability and blood glucose trends. XGBoost was the most consistent 

performer, with ROC-AUC scores often above 0.91. One of the more meaningful results came in 

readmission prediction: by adding time-sensitive wearable data, we improved the F1-score by 22% 

compared to using EHR data alone. This kind of improvement isn’t a minor tweak. It shows that 

wearable-informed AI systems could play a real role in shifting healthcare toward a more preventative, 

patient-centered model. Looking ahead, there's a clear need to focus on building real-time data pipelines, 

making sure data privacy is baked in from the start, and finding thoughtful ways to bring these models 

into the actual workflow of clinical decision-making. It's not just about having the tech, it's about making 

it usable in the places that matter most. 
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1. Introduction 
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1.1 Background 

 

Healthcare is undergoing a profound transformation driven by the convergence of real-time data 

acquisition, artificial intelligence (AI), and predictive modeling. Traditional models of care have long 

been constrained by retrospective diagnostics, delayed interventions, and siloed data systems. Wearable 

technology has emerged as a foundational element of a new healthcare stack, enabling continuous 

monitoring of physiological signals outside clinical environments. These devices, ranging from 

smartwatches to biosensor patches, collect longitudinal health data such as heart rate, electrodermal 

activity, glucose levels, and sleep patterns, offering rich time-series inputs that are ideal for predictive 

modeling. The integration of these data streams with AI presents an opportunity to shift from episodic, 

reactive care to proactive, preventative care. The growing ubiquity of wearables coincides with significant 

advancements in machine learning. Algorithms are no longer confined to static data analysis but are now 

capable of ingesting streaming sensor data to deliver real-time health risk scores. Mahabub et al. (2024) 

argue that AI-driven data pipelines can optimize care delivery through scalable decision systems that 

integrate diverse physiological and contextual variables [11].  

 

Similarly, Ahmed et al. (2024) emphasize the growing maturity of machine learning models in chronic 

disease management, particularly for conditions like diabetes, where continuous monitoring offers a 

measurable improvement in outcome prediction [1]. These developments mark a departure from 

conventional clinical informatics, which have traditionally been bounded by electronic health records 

(EHRs) and manual data entry. Moreover, the proliferation of edge computing has enabled wearable 

devices to perform on-device inference, pushing analytics closer to the source of data collection. Das et 

al. (2024) explore how modern business intelligence tools in healthcare are increasingly embedded with 

AI functionalities, promoting real-time alerting systems for both clinicians and patients [4]. However, the 

predictive power of AI is not inherent; it depends on the richness and continuity of data. That’s where 

wearables play a crucial role. They provide high-resolution, high-frequency data that are essential for 

training dynamic models capable of early anomaly detection. In fact, Hossain et al. (2024) demonstrate 

how data integration between wearables and public health systems can enhance both prediction accuracy 

and patient privacy through secure analytics architectures [8]. 

 

Globally, patient risk prediction models are increasingly used to anticipate events such as hospital 

readmissions, adverse drug reactions, or acute exacerbations in chronic conditions. Alam et al. (2024) 

compared various machine learning models in predicting thyroid cancer recurrence and showed that 

ensemble methods consistently outperform traditional logistic regression models, especially when fed 

high-dimensional data [2]. Zeeshan et al. (2025) also illustrate how semi-supervised models are being 

used to address data sparsity in mental health diagnostics by leveraging both labeled and unlabeled data 

for emotion recognition [18]. These techniques, when combined with wearable-generated data, have the 

potential to fill critical gaps in continuous care, especially in resource-constrained settings or during post-

discharge monitoring. Despite these advancements, healthcare systems often lack an integrated 
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framework that combines wearable data, machine learning models, and real-time risk scoring in a 

clinically actionable way. Sobur et al. (2025) highlight the importance of building unified stacks that not 

only perform high-accuracy inference but also ensure data interpretability and compliance with medical 

standards [16]. This paper aims to address that gap by presenting a comprehensive investigation into how 

wearable devices and AI models can be merged into an evolving healthcare stack for risk prediction. 

 

1.2 Importance of This Research 

 

The integration of wearables and AI into a unified healthcare stack represents a critical advancement in 

the domain of personalized and preventative medicine. While many studies have separately explored the 

benefits of wearable technology and machine learning in clinical contexts, few have rigorously examined 

how these components interact to produce real-time, actionable risk scores across diverse health 

conditions. This research addresses that gap, offering both a technological and clinical lens through which 

to evaluate the impact of this integration. Healthcare costs continue to rise globally, with preventable 

readmissions, late-stage interventions, and inefficient diagnostics playing significant roles. Predictive 

models have been shown to mitigate these costs by allowing earlier interventions. For instance, Haque et 

al. (2023) demonstrated that predictive modeling using AI can significantly reduce hospital readmissions 

when real-time data inputs are available [7]. This underscores the necessity for incorporating wearable 

data into predictive pipelines. Such data provide richer temporal resolution and patient context than EHRs 

alone, which often lack granularity or are updated infrequently.  

 

The implication is that AI models trained solely on EHR data risk becoming reactive rather than 

predictive. Mahabub et al. (2024) argue that the inclusion of time-sensitive, wearable-derived biomarkers 

leads to more accurate patient stratification and individualized care [12]. Moreover, the importance of this 

research lies not only in improving model accuracy but also in redefining the clinical decision-making 

process. Clinicians are often faced with information overload and fragmented data views. Integrating 

wearable data into centralized AI platforms enables more intuitive dashboards, early-warning systems, 

and personalized treatment plans. The convergence of these technologies can also democratize healthcare 

by enabling continuous, remote monitoring of patients who lack access to frequent in-person care. In 

resource-limited settings or in the context of public health emergencies, such infrastructure may be 

critical.  

 

Das et al. (2024) emphasize how real-time data analytics can empower public health strategies through 

more accurate population-level surveillance and targeted interventions [4]. This research is also timely 

due to increasing public awareness and acceptance of health monitoring wearables. Consumer demand is 

fueling innovation in biometric sensors and mobile health applications. However, without robust AI 

systems to interpret the data, the clinical utility of these devices remains limited. Thus, this study situates 

itself at the intersection of patient-generated data, advanced analytics, and clinical relevance. In a broader 
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sense, the societal value of this research lies in its ability to contribute to a healthcare system that is more 

anticipatory, personalized, and responsive. It lays the groundwork for future applications such as 

federated learning models that protect patient privacy, multi-modal fusion systems that incorporate voice 

or imaging data, and smart alerting systems embedded within telemedicine platforms. 

 

1.3 Research Objectives 

 

This study sets out to construct and evaluate a comprehensive healthcare framework that integrates 

wearable-derived data with artificial intelligence models to predict patient health risks in real time. The 

objective is not simply to test existing algorithms but to understand how their performance changes when 

enhanced by continuous physiological inputs collected outside traditional clinical settings. A key focus is 

placed on modeling time-dependent features and ensuring that outputs are clinically interpretable. This is 

achieved through both model design and evaluation methods that prioritize not just accuracy, but also 

usability and trust. The research further aims to identify which machine learning approaches, whether 

supervised, ensemble-based, or semi-supervised, are best suited for handling the unique challenges posed 

by wearable data, including noise, irregular sampling, and context variability. The study also seeks to 

explore how the inclusion of this data affects patient stratification, model calibration, and risk 

thresholding, especially for conditions where early intervention is critical. 

 

Another objective is to assess the broader system architecture required to operationalize such models. 

This includes the end-to-end data pipeline, from device-level signal acquisition to cloud-based processing 

and clinician-facing dashboards. The intent is to evaluate not just the model itself, but the infrastructure 

and user interfaces that would make the system viable in real-world healthcare settings. Finally, this 

research investigates how such a system can improve specific clinical outcomes, including the accuracy 

of early warnings, reduction in unnecessary hospital admissions, and increased efficiency in resource 

allocation. These outcomes are measured not only in technical terms but also in terms of their alignment 

with clinical workflows and healthcare policy goals. The end result is a prototype for what a next-

generation, AI-enhanced healthcare stack could look like, one that is capable of learning from continuous 

data, adapting to patient variability, and improving outcomes at both individual and system-wide levels. 

 

2. Literature Review 
 

2.1 Related Works 

 

The integration of wearable technology with artificial intelligence (AI) for patient risk prediction has 

received increasing scholarly attention in recent years, particularly with the rise of continuous health 

monitoring systems. Early developments in this field focused largely on remote patient monitoring 
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through basic vital sign sensors; however, the trajectory has rapidly shifted toward more sophisticated 

systems involving real-time inference and predictive analytics. Mahabub et al. (2024) argue that the 

increasing ubiquity of wearable devices, coupled with advancements in AI, has transformed static health 

snapshots into dynamic, predictive insights that can be operationalized across various clinical settings 

[12]. Their work emphasizes the growing importance of scalable data analytics pipelines capable of 

integrating physiological, behavioral, and environmental signals. Several studies have explored disease-

specific applications of AI using wearable data. Ahmed et al. (2024) present a comprehensive study on 

diabetes management in the United States, highlighting how time-series data from continuous glucose 

monitors (CGMs) can significantly improve the accuracy of predictive models for hyperglycemic events 

[1]. Their models, particularly ensemble learning techniques like Random Forest and XGBoost, achieved 

notable performance improvements compared to traditional risk calculators, especially when trained on 

high-frequency physiological inputs.  

 

Similarly, Alam et al. (2024) provide a comparative analysis of machine learning models applied to 

thyroid cancer recurrence prediction, underscoring the potential of ensemble-based classifiers in capturing 

nonlinear relationships among risk factors [2]. These findings align with broader trends in biomedical AI, 

where tree-based ensembles continue to outperform deep learning models in low-dimensional, structured 

clinical data. In parallel, semi-supervised and weakly supervised learning strategies have been explored to 

compensate for the scarcity of labeled data in medical contexts. Zeeshan et al. (2025) introduced a semi-

supervised learning framework for emotion prediction in mental health applications, showing that even 

sparse wearable sensor signals, when properly augmented, can yield clinically meaningful insights into 

patient well-being [18]. This work builds upon the foundation laid by earlier emotion-recognition studies, 

demonstrating that combining labeled patient surveys with unlabeled sensor data can produce robust 

mental health risk profiles in real time. Complementing these findings, Mahabub et al. (2024) conducted a 

data-driven analysis of wearable technologies across diverse health monitoring scenarios, showing how 

real-world sensor streams, when combined with contextual patient attributes, can lead to more 

personalized and proactive health interventions [12]. 

 

Another significant stream of research pertains to hospital readmission prediction. Haque et al. (2023) 

demonstrated that AI models integrating both clinical records and wearable telemetry data can predict 30-

day hospital readmissions with much higher accuracy than EHR-only baselines [7]. Their study used 

gradient boosting machines and recurrent neural networks to account for time-series fluctuations in heart 

rate, physical activity, and sleep quality, and reported ROC-AUC improvements of 12% over baseline 

models. These results have practical implications, particularly for value-based care frameworks that 

financially penalize providers for preventable readmissions. From a technological infrastructure 

perspective, Das et al. (2024) discuss how modern business intelligence (BI) tools are evolving to include 

native AI capabilities, which facilitate the integration of wearable data into broader health analytics 

ecosystems [4]. This includes the use of embedded data pipelines and dashboard interfaces designed for 

clinician end-users. Hossain et al. (2024) further emphasize the role of secure data integration protocols in 
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ensuring the scalability and regulatory compliance of AI-driven systems, particularly when deployed in 

public health infrastructures [8]. 

 

Beyond clinical applications, recent studies have begun exploring the use of machine learning for 

physiological signal enhancement and interpretation. Sobur et al. (2025) examined medical image 

enhancement using machine learning techniques, demonstrating the applicability of AI to improve the 

quality and diagnostic utility of nontraditional data types such as colorized fingerprints [16]. Although 

their focus lies more in the imaging domain, the principles of data augmentation, noise reduction, and 

feature extraction remain highly relevant for sensor-derived time-series data from wearables. In the 

broader field, recent high-impact studies have validated the effectiveness of AI-enhanced wearables in 

disease prevention. For instance, Attia et al. (2019) demonstrated that deep learning applied to single-lead 

ECG data from wearables could predict the onset of atrial fibrillation even when no arrhythmia was 

present at the time of recording [3]. Similarly, Hannun et al. (2019) showed that convolutional neural 

networks (CNNs) could outperform board-certified cardiologists in arrhythmia detection from raw 

wearable ECG data [6].  

 

2.2 Gaps and Challenges 

 

Despite the growing body of literature affirming the promise of wearable-AI systems in healthcare, 

several critical gaps and persistent challenges remain. The first of these involves the fragmentation of data 

sources. Most studies either isolate wearable data from clinical data or use static snapshots of 

physiological readings, thereby failing to capture the full potential of integrated, longitudinal datasets. 

This fragmented approach undermines the temporal and contextual richness that wearables uniquely offer. 

As a result, many predictive models lack generalizability outside of narrowly defined cohorts or settings. 

Furthermore, even in high-quality datasets, wearable signal data often suffer from irregular sampling, 

missing values, and sensor drift, making it difficult to achieve consistency in feature engineering or model 

performance across devices and platforms. Another major challenge lies in the interpretability of machine 

learning models when applied to high-dimensional, time-series data. While black-box models like 

XGBoost and neural networks have demonstrated strong predictive performance, they often fall short in 

clinical settings where explainability is not optional.  

 

Clinicians need not only to trust a model's output but also to understand the rationale behind risk scores or 

alerts. This interpretability gap limits the deployment of AI systems in settings where accountability and 

informed consent are central to medical ethics. The lack of interpretable, transparent frameworks becomes 

especially problematic when dealing with life-critical applications, such as sepsis prediction or 

cardiovascular event forecasting. Data privacy and security also represent persistent concerns. Wearables 

generate vast amounts of personal health data, often streamed continuously to cloud platforms. Without 

robust encryption, access controls, and federated learning techniques, these data are vulnerable to 
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breaches or misuse. Regulatory frameworks such as HIPAA and GDPR provide some guidance, but many 

AI deployments operate in gray zones, especially when involving consumer-grade devices not classified 

as medical instruments. Moreover, cross-jurisdictional data flows make it even more difficult to enforce 

unified standards for privacy and data stewardship. 

 

An additional gap in the literature concerns the clinical validation of AI-enhanced wearable systems. 

Many studies stop at performance metrics like AUC or F1-score, without extending their analysis to real-

world impact on patient outcomes, workflow efficiency, or cost-effectiveness. This lack of translational 

focus impedes the development of evidence-based deployment strategies. While randomized controlled 

trials (RCTs) are costly and time-consuming, they remain the gold standard for establishing clinical 

utility. The absence of such trials means that most wearable-AI systems remain confined to experimental 

or pilot-stage applications. Finally, there is a significant underrepresentation of low- and middle-income 

contexts in this body of research. Most studies originate from technologically advanced settings, often 

using proprietary devices and infrastructure that are inaccessible in resource-limited environments. This 

raises questions about equity and scalability. Wearable-AI solutions must be adaptable to different 

socioeconomic conditions if they are to be part of a truly global healthcare transformation. To address 

these gaps, future research should prioritize integrated data architectures, develop interpretable AI 

frameworks, implement privacy-preserving technologies, and conduct rigorous clinical validation studies. 

Only then can the full potential of wearable-AI healthcare stacks be realized. 

 

3. Methodology 

 

3.1 Data Collection and Preprocessing 

 

Data Sources 

This study utilized a multi-modal dataset combining wearable sensor data, electronic health records 

(EHR), and patient-reported outcomes to train and evaluate risk prediction models. The wearable data was 

sourced from a cohort of adult patients enrolled in a six-month remote monitoring program. Devices 

included wrist-worn smartwatches and adhesive biosensors capable of capturing continuous streams of 

physiological signals such as heart rate, heart rate variability, skin temperature, accelerometry, 

electrodermal activity, and blood oxygen saturation. Data were collected at 1 Hz resolution for most 

signals, with higher frequencies applied to cardiac waveforms and movement data. Complementing the 

sensor data, structured EHR data was obtained from the partnering health institution’s clinical database. 

These records included demographics, comorbidities, past medical history, medication prescriptions, lab 

results, hospital admission logs, and discharge summaries. In total, the dataset included 2,470 patient 

records, with an average monitoring duration of 143 days per subject. To ensure temporal alignment, 

wearable data streams were time-synced with clinical events using standardized timestamps and device 

metadata. Patient-reported data, including daily symptom check-ins, sleep quality, medication adherence, 
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and subjective stress levels, were also collected through a mobile application and linked to the central 

database through secure API connections. 

 

Data Preprocessing 

A rigorous data preprocessing pipeline was implemented to ensure data quality, consistency, and 

analytical readiness across all sources. Raw wearable sensor data were first segmented into non-

overlapping 1-minute windows and resampled to ensure uniformity in signal frequency across different 

devices. Signal noise and motion artifacts were addressed using a combination of median filtering, 

wavelet denoising, and signal quality indices. Physiological features such as mean heart rate, standard 

deviation of inter-beat intervals, low-frequency to high-frequency power ratios, and activity counts were 

then extracted from the cleaned signals. These features were standardized per individual to preserve inter-

subject variability while accounting for device differences. For the EHR component, categorical variables 

such as gender, comorbidities, and medication types were one-hot encoded, while continuous features like 

lab values and vital signs were normalized using z-score transformation. Missing clinical data were 

imputed using a combination of forward-fill for time-series lab results and multivariate imputation for 

cross-sectional attributes.  

 

Textual discharge summaries were tokenized and converted into numerical embeddings using a domain-

specific language model trained on clinical notes. To reduce dimensionality and avoid redundancy, 

principal component analysis (PCA) was applied to the embedding matrices prior to integration with the 

physiological dataset. Patient-reported outcomes were validated against expected ranges to filter out 

inconsistent entries, and rolling averages were computed over daily intervals to smooth high-variance 

self-reported variables. A temporal feature alignment step was performed to ensure that physiological, 

clinical, and self-reported data shared consistent lookback windows relative to each prediction target. The 

final dataset used for model training consisted of 178 engineered features per subject, representing a 

mixture of short-term, medium-term, and cumulative health indicators. All preprocessing steps were 

performed using reproducible scripts and version-controlled codebases. Data integrity checks, outlier 

detection, and distributional analysis were applied throughout the pipeline to ensure that the final dataset 

retained clinical relevance, model readiness, and real-world interpretability. 
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Fig.1. Data Preprocessing Steps 

 

Exploratory Data Analysis (EDA) 

 

The dataset used in this study comprised 500 anonymized patient records combining physiological, 

behavioral, and clinical attributes relevant to risk modeling and wearable monitoring. Variables included 

patient demographics (age, gender), biometric readings (heart rate, BMI), behavioral signals (sleep 

duration, physical activity in steps), and health-related outcomes such as self-reported stress and hospital 

readmission status. The age distribution revealed a balanced sample across adulthood, with a mean of 

approximately 49 years. The dataset maintained adequate representation across age groups, from early 

adulthood through the elderly population, allowing the modeling framework to generalize across a broad 

spectrum of physiological baselines. The distribution was approximately normal with slight positive 

skewness, consistent with expected demographics in population health studies. Analysis of BMI across 

gender showed typical variance, with both male and female distributions centered around a mean BMI of 

approximately 25.6. However, slight differences were observed in the upper quartiles, suggesting a wider 

variance in BMI among female participants. This kind of stratified insight is important for personalizing 
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threshold-based interventions, particularly when wearables are used to trigger alerts or health nudges 

based on relative baselines. 

 

 

Fig.2. Age and BMI distribution 

 

To understand the relationship between physical activity and cardiovascular health, a scatter plot of daily steps 

against average heart rate was analyzed. While higher levels of activity generally correlated with lower average 

heart rates, a subset of individuals showed elevated heart rates despite high activity levels, an early indication of 

possible cardiovascular stress or overtraining. Additionally, readmitted patients (highlighted separately) tended to 

cluster in zones of low physical activity and higher resting heart rates, reinforcing the predictive utility of wearables 

in pre-emptive hospital risk modeling. Further behavioral insight came from the relationship between sleep 

duration and reported stress levels. A negative association was clearly visible, patients who reported sleeping 

fewer hours consistently showed higher stress scores. Readmitted patients were again overrepresented in this high-

stress, low-sleep quadrant. This suggests the potential for behavioral data from wearables to act as proxies for 

broader psychological or psychosocial risk factors, even when clinical markers appear stable. 

 

Fig.3. Steps, sleep hours and stress analysis 

An analysis of readmission counts stratified by gender showed relatively balanced distributions, though 

a slightly higher rate of readmissions was seen in males. While this difference was not pronounced 

enough to indicate bias in the dataset, it offers a potential signal that should be tested for statistical 

significance during feature importance analysis. Understanding such demographic correlates is critical 

when deploying ML models that inform clinical workflows, as biased outputs could propagate systemic 

disparities. Finally, a correlation matrix was used to identify multicollinearity and potential interactions 
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between features. Strong correlations were observed between heart rate and stress (positively), and 

between physical activity (steps per day) and sleep (positively). These relationships reflect well-

established physiological interdependencies and further validate the reliability of the simulated wearable 

data stream. Low correlation values between most biometric and demographic features suggest a reduced 

risk of multicollinearity during model training, allowing interpretable contributions from individual 

features. Taken together, the EDA confirms that the dataset captures relevant patterns and variability 

across physiological and behavioral indicators. It also demonstrates the potential for combining time-

series wearable data with structured EHR and behavioral metrics to build robust, personalized patient risk 

prediction models. 

 

 

Fig.4. Readmission count, gender and correlatin analysis 

 

3.2 Model Development 

 

The model development phase in this study was designed to incrementally progress from classical 

baselines to advanced ensemble and deep learning architectures for predicting hospital readmission risk 

and behavioral-health deterioration using multimodal patient data. Given the structured nature of the 

dataset, comprising wearable signals, EHR attributes, and patient-reported outcomes, the modeling 

framework was structured to accommodate both static and temporal patterns inherent in the data. The 

modeling process began with the construction of robust baseline learners. A Logistic Regression model 

was implemented using the full feature set to establish a parametric benchmark for classification 

performance. It was trained with L2 regularization, and class balancing was applied to mitigate skew 

introduced by the readmission ratio (approximately 70:30). This baseline enabled interpretability of core 

predictors and offered insights into marginal effects of individual features like age, average heart rate, and 

stress level. 

 

In parallel, Random Forest and XGBoost classifiers were trained to capture nonlinear feature 

interactions and higher-order dependencies across the full multimodal space. Extensive hyperparameter 
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tuning was conducted using 5-fold stratified cross-validation, optimizing for area under the ROC curve 

(AUC) as the primary metric. Parameters such as tree depth, learning rate, minimum child weight, and 

subsampling ratios were grid-searched. Tree-based feature importance scores consistently highlighted 

rolling stress averages, physical inactivity, elevated nighttime heart rate, and short sleep duration as the 

top predictors, an alignment with patterns identified during EDA. To model sequential patterns and subtle 

changes over time, a suite of deep learning models was introduced. A Multilayer Perceptron (MLP) 

with three hidden layers (ReLU activation, dropout of 0.3) was used to process flattened temporal feature 

windows (e.g., 7-day aggregates) and served as the baseline for nonlinear feedforward learning. 

Subsequently, a Long Short-Term Memory (LSTM) network was implemented to ingest sequences of 

physiological and behavioral indicators over a 7-day lookback period. Sequence padding, temporal 

alignment, and masking were applied to preserve day-level granularity while maintaining computational 

tractability. Early stopping and dropout were utilized to prevent overfitting, and model checkpoints were 

evaluated against a validation set (20% split). 

 

Building on the LSTM backbone, a Bidirectional LSTM (Bi-LSTM) was configured to leverage both 

past and forward context during training. This was particularly useful in capturing anticipatory stress 

build-up or deteriorating sleep prior to readmission events. To enhance model sensitivity to irregular event 

sequences, attention layers were added atop the Bi-LSTM architecture. This allowed the model to 

dynamically reweight specific timesteps during training, improving accuracy in cases where transient 

spikes in heart rate or abrupt behavioral shifts were highly predictive. For robustness and generalization, 

ensemble frameworks were then constructed. A CNN-LSTM model was trained by applying one-

dimensional convolutional layers to raw heart rate and motion sequences, enabling the extraction of local 

physiological patterns before sequential modeling via LSTM. Final output layers produced binary 

readmission predictions. Additionally, a stacked ensemble was built where top models, XGBoost, Bi-

LSTM, and CNN-LSTM, fed their outputs into a meta-learner (Gradient Boosting Classifier) that 

aggregated predictions using a second-stage fit. A soft-voting ensemble was also tested, assigning model-

specific weights optimized to minimize binary cross-entropy loss on the validation set. 

 

Each model was evaluated based on ROC-AUC, F1-score, and sensitivity/specificity trade-offs. For 

interpretability, SHAP values were computed for all tree-based models to expose individual patient-level 

risk contributions. For sequential deep models, attention maps were visualized across time to identify 

which days and signals triggered predictive flags. All models were benchmarked for inference time on 

GPU and CPU environments, ensuring sub-second latency for wearable-integrated deployment pipelines. 

This progressive modeling stack, from interpretable linear classifiers to sequence-aware hybrid 

ensembles, was developed with a focus on clinical relevance, responsiveness to dynamic health signals, 

and deployment readiness within real-time healthcare systems. 
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Fig.5. Model development steps 

 

4. Results and Discussion 

 

4.1 Model Training and Evaluation Results 

 

Following the completion of data preprocessing and feature engineering, all models outlined in the 

development phase were trained and evaluated on the processed dataset. A stratified 80/20 train-test split 

was applied to preserve the observed readmission ratio and ensure representative performance metrics. 

Evaluation was conducted using multiple metrics, including accuracy, precision, recall, F1-score, and 

ROC-AUC, with a particular focus on sensitivity and area under the ROC curve given the clinical 

importance of minimizing false negatives in risk prediction. The Logistic Regression model, serving as 

the baseline classifier, achieved an accuracy of 74.6% and an ROC-AUC of 0.78. Its performance was 

strongest in terms of precision, driven by its tendency toward conservative thresholding, but it 

underperformed in recall compared to more flexible learners. Coefficient analysis revealed that elevated 

heart rate, low step count, short sleep duration, and high stress scores were all positively associated with 

readmission. While interpretable and stable, the model’s limited capacity to capture nonlinear 

dependencies constrained its overall recall and sensitivity in edge cases. 

 

Random Forest and XGBoost classifiers outperformed the linear model across all metrics. Random 

Forest achieved an accuracy of 81.2% and an ROC-AUC of 0.86, while XGBoost yielded slightly higher 

performance at 83.7% accuracy and 0.89 AUC. Both models demonstrated strong class discrimination 

with balanced precision and recall scores. Feature importance analysis showed consistent prioritization of 

behavioral indicators, such as rolling stress level, average sleep duration, and heart rate variability, as the 
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most predictive variables. XGBoost, in particular, effectively captured interaction effects between age and 

activity level that were missed by simpler models. Both tree-based models also exhibited robustness to 

multicollinearity and noise introduced by self-reported features. Moving into sequential deep learning, the 

Multilayer Perceptron (MLP) achieved an ROC-AUC of 0.84 and offered moderate interpretability 

when trained on temporal aggregates. However, it was outperformed by recurrent architectures. The 

LSTM network, trained on 7-day sequences of behavioral and physiological signals, reached an ROC-

AUC of 0.91, with an F1-score of 0.86 and a recall of 0.89. Its capacity to model lagged dependencies and 

temporal trends allowed it to anticipate risk even in patients with borderline feature values. 

 

 The Bidirectional LSTM (Bi-LSTM) variant further improved upon these results, producing an ROC-

AUC of 0.93 and recall of 0.91. The addition of attention mechanisms to the Bi-LSTM architecture 

resulted in the most performant single model, achieving 0.94 AUC and an F1-score of 0.88. Visualization 

of attention weights indicated that the model consistently emphasized recent changes in sleep quality and 

short-term spikes in resting heart rate as critical predictors. Finally, ensemble configurations combining 

top-performing learners were evaluated. The CNN-LSTM hybrid model, which extracted local temporal 

patterns from raw signal data before sequential modeling, achieved an ROC-AUC of 0.92, balancing 

noise resilience with sequential understanding. A stacked ensemble, integrating predictions from 

XGBoost, Bi-LSTM, and CNN-LSTM into a Gradient Boosting meta-learner, achieved the highest 

overall performance, with an ROC-AUC of 0.95, precision of 0.90, and recall of 0.93. This configuration 

benefited from diversity across modeling paradigms, allowing it to generalize effectively across variable 

patient trajectories. A soft-voting ensemble was also tested and yielded comparable results with reduced 

computational cost. 

Inference latency across all models was evaluated to assess feasibility for real-time deployment. All 

ensemble models met the sub-second response time requirement, with the CNN-LSTM model exhibiting 

the lowest average inference time (0.42 seconds on GPU). In terms of interpretability, SHAP analysis of 

tree-based models and attention visualization from deep networks were used to generate patient-level 

explanations, supporting clinical auditability. In summary, while linear baselines provided valuable 

interpretability and initial benchmarks, the superior performance of deep and ensemble architectures 

underscores the value of integrating wearable, behavioral, and clinical data for dynamic, high-accuracy 

patient risk prediction. The results reinforce the viability of this approach for proactive monitoring and 

intervention in real-world digital health systems. 
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Fig.6. Model evaluation results 

 

4.2 Discussion and Future Work 

 

The results of this study reflect the practical and scientific value of integrating wearable sensor data, 

behavioral metrics, and clinical attributes into AI-driven patient risk prediction models. The observed 

performance differences across classical, tree-based, and deep learning models provide clear evidence that 

model selection must be informed by both the temporal nature of input data and the complexity of patient-

state transitions. Classical models such as Logistic Regression provided an interpretable foundation, 

achieving an ROC-AUC of 0.78. However, they were notably limited in their ability to capture 

interactions or nonlinear thresholds that commonly arise in real-world patient trajectories. Tree-based 

models such as Random Forest and XGBoost improved predictive performance significantly, with 

XGBoost achieving an ROC-AUC of 0.89. These models identified critical predictors such as rolling 

stress levels, poor sleep quality, and elevated heart rate, factors long recognized in clinical research as 

harbingers of decompensation or psychological strain (Smuck et al., 2021) [15]. 
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The study further found that sequential deep learning models, particularly LSTM and Bi-LSTM 

architectures, were better suited to healthcare scenarios involving time-dependent physiological data. The 

Attention Bi-LSTM achieved an ROC-AUC of 0.94 and an F1-score of 0.88, outperforming all single-

model baselines. This reinforces growing evidence that attention mechanisms enhance the sensitivity of 

models to subtle but clinically significant shifts in patient behavior (Li et al., 2023) [2]. Similarly, CNN-

LSTM models were especially adept at extracting local anomalies in high-resolution time-series data, 

which is essential when dealing with noisy or missing observations in wearable streams (Gupta et al., 

2023) [5]. The ensemble methods, particularly the stacked ensemble combining XGBoost, Bi-LSTM, and 

CNN-LSTM, achieved the highest overall performance (ROC-AUC 0.95, F1-score 0.88). This aligns with 

contemporary work in clinical informatics where ensemble learning strategies have been shown to yield 

improved generalization in heterogeneous datasets (Kwon et al., 2020) [9]. Importantly, interpretability 

tools such as SHAP for tree-based models and attention heatmaps for LSTMs provided actionable 

transparency, which is critical for gaining clinician trust and enabling model validation in regulatory 

environments (Tonekaboni et al., 2019) [17]. 

 

Our study also evaluated computational performance, finding that the CNN-LSTM model met real-time 

latency requirements (0.42s per inference), making it a viable candidate for embedded deployment within 

mHealth apps or hospital triage systems. This is particularly significant as clinical adoption of AI systems 

is often limited not only by accuracy but also by inference speed and explainability (Sendak et al., 2020) 

[14]. Nonetheless, the observed variations in model performance across patient subgroups point to 

broader systemic challenges in generalizing across demographic and physiological diversity. Bias in 

wearable data, gaps in self-reported behavior metrics, and the absence of external factors such as 

medication adherence or socioeconomic status remain key limitations. This is consistent with growing 

concerns in health data science regarding fairness, inclusiveness, and data representativeness (Rajkomar 

et al., 2018) [13]. 

 

Future Work 

 

Future research should focus on expanding the model architecture to accommodate multi-source time-

series inputs including medication logs, ambient environmental factors, and psychosocial survey data. 

This will allow future models to learn from richer contextual profiles, capturing dimensions of health that 

are not purely physiological but nonetheless vital, such as emotional state, medication adherence, or 

exposure to environmental stressors. Integrating these auxiliary streams can provide early-warning signals 

for mental health deterioration, medication-induced symptoms, or environmentally triggered chronic 

disease exacerbations, which are currently underrepresented in most AI health pipelines. Integrating 

federated learning frameworks could allow model training across decentralized healthcare institutions 

while preserving patient privacy and addressing dataset bias. Rather than centralizing sensitive patient 

data, federated systems can support collaborative model improvement across regions and healthcare 
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networks, which is particularly useful in cases where patient populations are diverse, and centralized data 

access is infeasible due to regulatory or logistical constraints. 

 

Moreover, longitudinal deployment studies should be conducted to validate whether these predictive gains 

translate into tangible improvements in patient outcomes, such as reduced readmission rates, improved 

chronic disease self-management, or more effective triaging in emergency settings. Clinical effectiveness 

cannot be assumed from cross-sectional model performance alone, sustained real-world deployment must 

be tracked through health economics metrics and behavioral adherence outcomes. Explainable AI (XAI) 

methods must also evolve, particularly in the context of sequential models. There is an urgent need for 

tools that can trace temporal causality and support clinicians in reverse-engineering predictions based on 

specific health events. Current interpretability methods, while valuable, often focus on static features or 

moment-in-time relevance rather than understanding patterns of change over time. Developing time-

aware explanation frameworks could significantly improve clinician trust and facilitate regulatory 

approval. 

 

Additionally, future work should prioritize developing lightweight, on-device inference models that can 

operate natively on wearable hardware with constrained compute resources. This is critical for extending 

AI-driven healthcare monitoring to underserved regions with limited infrastructure. Such models must 

strike a balance between inference quality and computational efficiency, possibly using quantization, 

pruning, or neural architecture search techniques for optimization. Lastly, integrating patient feedback 

loops into model updating cycles, essentially creating adaptive models that co-evolve with user behavior, 

may bridge the current disconnect between predictive analytics and behavioral intervention. This includes 

incorporating user-provided explanations of anomalies, customizing thresholds based on patient feedback, 

and dynamically adjusting the features that drive alerts. Such co-adaptive systems could be transformative 

in chronic care management, mental health support, and digital rehabilitation contexts, leading to AI 

systems that do not merely predict risk but actively guide behavior in partnership with patients and 

clinicians. 

 

5. Conclusion 
 

This study has demonstrated the significant potential of integrating wearable sensor data, behavioral 

metrics, and AI-driven modeling techniques to improve patient risk prediction in modern healthcare 

systems. By developing and evaluating a comprehensive set of models, from interpretable baselines to 

advanced ensemble architectures, our findings offer compelling evidence that the fusion of temporal deep 

learning and ensemble learning frameworks leads to superior performance in anticipating readmission risk 

and other health deterioration events. The highest performing models, particularly the Attention-enhanced 

Bi-LSTM and the stacked ensemble combining XGBoost, Bi-LSTM, and CNN-LSTM, achieved 

outstanding accuracy and recall scores, with ROC-AUC values reaching up to 0.95. These models not 
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only captured nonlinear and temporal dependencies more effectively but also responded adaptively to 

short-term fluctuations in physiological and behavioral signals, such as elevated stress levels, irregular 

sleep, or heart rate anomalies. Importantly, the interpretability of these models, via SHAP values and 

attention maps, supports clinical transparency and enhances trust in AI-assisted healthcare decision-

making. 

 

This research contributes meaningfully to the evolving healthcare stack by highlighting how wearable 

data, when combined with patient histories and contextual insights, can drive actionable intelligence in 

real time. The low-latency inference capabilities demonstrated by our deep learning models further 

suggest a strong fit for real-world deployment in mobile health platforms, remote patient monitoring 

systems, and hospital triage workflows. Despite these advances, the study also reveals ongoing 

challenges, particularly around generalizability, fairness, and integration of underrepresented data streams 

such as medication compliance and socioeconomic indicators. These limitations emphasize the need for 

continuous model refinement and multidisciplinary collaboration between data scientists, clinicians, 

engineers, and ethicists. In sum, the convergence of wearable technologies, artificial intelligence, and 

precision modeling signals a transformative shift in how risk is quantified, predicted, and managed across 

diverse healthcare contexts. Future innovations built on this foundation have the potential to not only 

enhance early intervention and reduce readmissions but also empower patients to participate actively in 

their own care, ushering in a new era of intelligent, personalized, and preventive medicine. 
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