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Abstract: 

The increasing complexity and decentralization of smart grids in the U.S. have heightened the demand for 

accurate and responsive energy load forecasting systems. This research presents a comprehensive real-

time machine learning framework for short-term energy demand prediction, utilizing multi-source data 

from national grid operators, weather stations, and calendar logs. We integrate electricity demand records 

from the U.S. Energy Information Administration (EIA) with weather attributes from NOAA, along with 

temporal features such as hour, day, seasonality, and holiday indicators, to create a feature-rich dataset for 

predictive modeling. Our feature engineering captures lagged consumption behavior, rolling averages, 

time-series decomposition signals, and weather-induced demand variability. Through exploration data 

analysis (EDA), we uncover critical load patterns, diurnal cycles, and seasonal fluctuations across 

different grid regions. We implement and evaluate a diverse range of supervised learning models, 

including tree-based regressors (Random Forest, XGBoost), multilayer perceptrons, and deep recurrent 

architectures such as LSTM, Bi-LSTM, and attention-enhanced LSTM. Additionally, we construct hybrid 

models that combine convolutional layers with temporal encoders to capture both local and sequential 

patterns in load data. Evaluation on real-world load datasets reveals that deep LSTM-based models 

outperform traditional baselines, achieving a mean absolute percentage error (MAPE) of less than 5% in 

high-variance regions. Visual inspection of model predictions and residuals confirms their robustness 

during both peak and off-peak periods. To support operational deployment, we also simulate online 

inference scenarios using rolling windows and highlight each model’s responsiveness to sudden shifts in 

demand. Our results demonstrate the scalability and reliability of machine learning-driven forecasting 

pipelines, providing grid operators with a data-centric tool for real-time energy management in smart 

infrastructure ecosystems. 

Keywords: Smart Grids, Energy Load Forecasting, Machine Learning, Time Series Prediction, LSTM 

Networks, Real-Time Analytics. 

1. Introduction 
 

1.1 Background  
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The transition towards smart grid infrastructures in the United States has transformed traditional power 

systems into complex, data-rich networks requiring advanced management strategies to ensure stability, 

reliability, and efficiency. Real-time energy load forecasting is pivotal in balancing supply and demand, 

optimizing dispatch decisions, and reducing operational costs under the variability introduced by 

distributed generation and renewable sources. Conventional statistical methods, such as Autoregressive 

Integrated Moving Average (ARIMA) and exponential smoothing, often struggle to capture the nonlinear 

patterns and temporal dependencies inherent in high-frequency load data, motivating the adoption of 

machine learning (ML) techniques for improved predictive performance. 

Recent studies have demonstrated the efficacy of ML algorithms in short-term load forecasting by 

leveraging large-scale historical consumption and exogenous variables. Hossain et al. (2024) applied tree-

based regressors and recurrent neural networks to regional load datasets, showing that ensemble models 

like XGBoost can outperform linear baselines by up to 15% in RMSE reduction [6]. Similarly, Hossain, 

S. et al. (2025) compared the performance of Multilayer Perceptron (MLPs), LSTM networks, and hybrid 

CNN-LSTM architectures on utility-scale data, reporting sub-5% MAPE for deep learning models in 

capturing peak demand variations [8]. These findings underscore the importance of deep sequential 

models in modeling diurnal and seasonal load cycles across diverse grid zones. In addition to load 

features, environmental and calendar data have proven critical for enhancing forecast accuracy. Anonna et 

al. (2023) integrated NOAA weather variables, temperature, humidity, and wind speed, with temporal 

markers such as hour of day and holiday indicators, achieving a 10% improvement in MAPE over models 

trained solely on consumption histories [4]. Barua et al. (2025) extended this approach by incorporating 

rolling-window statistics and time-series decomposition signals, demonstrating that engineered features 

reflecting weather-induced demand shocks and seasonal trends significantly boost the responsiveness of 

ML predictors during extreme weather events [5]. 

Emerging research also highlights the role of hybrid and attention-based models in real-time applications. 

Hossain, M. S. et al. (2025) introduced an attention-enhanced Bi-LSTM framework that assigns dynamic 

weights to recent load observations, yielding a 7% lower RMSE compared to standard LSTMs under 

volatile conditions [11]. Chouksey et al. (2025) further explored the integration of convolutional layers 

for local pattern extraction before temporal encoding, reporting that CNN-LSTM hybrids offer superior 

robustness to noise and missing data, critical for reliable grid operation [6]. Despite these advances, 

challenges remain in deploying ML-driven forecasting pipelines in live grid environments, including data 

latency, model interpretability, and online retraining capabilities.  

1.2 Importance Of This Research 

 

Accurate real-time load forecasting is essential for mitigating the high operational costs and reliability 

risks in modern smart grids. The U.S. Department of Energy estimates that imbalances between supply 

and demand lead to over $5 billion in annual fuel and maintenance costs due to inefficient dispatch and 

reserve procurement (Hossain et al., 2024) [6]. Moreover, unexpected demand spikes have contributed to 

several high-profile outages, costing utilities and consumers millions in lost revenue and damages. 

Machine learning–based forecasting can reduce these errors by up to 20 % compared to traditional 

statistical methods, translating into substantial savings and enhanced grid resilience (Hossain, S. et al., 
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2025) [8]. The growing penetration of variable renewable energy sources, such as wind and solar, 

exacerbates load variability and forecast uncertainty. By integrating high-resolution weather forecasts and 

historical consumption patterns, ML-driven models have been shown to decrease carbon-intensive peaker 

plant utilization by 12 %, thereby cutting CO₂ emissions and operational costs simultaneously. In regions 

with aggressive renewable targets, such as California and Texas, improved short-term predictions also 

enable better utilization of energy storage assets, reducing curtailment and smoothing net load profiles for 

grid operators (Barua et al., 2025) [5]. 

Beyond cost and emissions benefits, real-time forecasting underpins critical grid functions such as 

demand response, ancillary service procurement, and regulatory compliance. For example, FERC Order 

841 mandates fast settlement of frequency regulation markets, requiring forecasts with sub-hourly 

accuracy and minimal latency. Attention-based LSTM and hybrid CNN–LSTM models have 

demonstrated the ability to meet these stringent requirements, achieving forecast horizons of 15 minutes 

with less than 3 % MAPE under dynamic load conditions (Chouksey et al., 2025) [6],  (Hossain, M. S. et 

al., 2025) [11]. By embedding adaptive, continuously learning algorithms into control centers, utilities 

can proactively manage contingencies, optimize resource allocation, and support the transition toward a 

more sustainable, flexible electricity system. As smart grids evolve to incorporate distributed energy 

resources (DERs) and prosumer interactions, the complexity of balancing bi-directional power flows 

increases. Real-time forecasts enable virtual power plant operators and aggregators to bid more accurately 

into wholesale markets, capture demand response opportunities, and coordinate microgrid islanding 

operations when necessary. Studies have shown that improved load forecasting at the feeder and 

substation level can reduce peak demand charges for commercial consumers by up to 8 %, highlighting 

economic incentives for both utilities and end-users (Gazi et al., 2025) [8]. 

From a societal perspective, bolstering grid reliability through enhanced forecasting directly impacts 

public safety and quality of life. During extreme weather events, such as heat waves or winter storms, 

accurate short-term load predictions allow operators to pre-emptively deploy mobile resources, issue 

conservation advisories, and coordinate with emergency services. This proactive stance can decrease 

outage durations by 30 %, minimizing the risk of cascading failures and ensuring critical services remain 

online (Barua et al., 2025) [5]. Finally, the integration of ML-based forecasting tools aligns with the 

broader regulatory push for grid modernization. Federal initiatives such as the Grid Resilience and 

Innovation Partnerships (GRIP) program emphasize the deployment of advanced analytics for situational 

awareness and operational efficiency. By demonstrating robust performance in real-time scenarios, this 

research contributes evidence that data-driven methods can meet, and often exceed, regulatory standards 

for accuracy, speed, and interpretability, thereby accelerating the adoption of intelligent forecasting 

solutions across the U.S. energy sector. 

1.3 Research Objectives 

 

The main objective of this research is to design, implement, and evaluate a unified machine learning 

framework for real-time short-term energy load forecasting in U.S. smart grids. To achieve this, we will 

develop and compare a variety of forecasting models, including classical time-series methods (ARIMA), 

tree-based regressors (Random Forest, XGBoost), feed-forward neural networks (MLP), and deep 
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sequential architectures (LSTM, Bi-LSTM, and attention-enhanced LSTM). These models will be trained 

on a comprehensive dataset that combines historical load data, weather variables, and calendar indicators. 

Each model will be evaluated based on its ability to achieve a mean absolute percentage error (MAPE) of 

5% or lower and a reduction in root mean squared error (RMSE) of at least 15% compared to ARIMA 

baselines for forecast horizons of up to one hour ahead. Additionally, the study will focus on engineering 

and assessing advanced feature extraction techniques to capture the effects of time and external factors on 

energy demand. We will create lagged consumption variables (e.g., t–1, t–24), rolling-window statistics 

(e.g., 3-hour and 24-hour means), seasonal decomposition components, and interaction terms between 

weather and load. These engineered features will feed into hybrid CNN-LSTM and attention-based 

models that are designed to learn both local and long-range dependencies in the data. The performance 

improvements from each feature set and architectural variation will be quantified using MAPE, RMSE, 

and the coefficient of determination (R²) on previously unseen test intervals. 

Finally, we will develop an ensemble forecasting mechanism that combines the strengths of the top-

performing individual models through weighted averaging and stacking. This composite predictor will be 

deployed within a rolling-forecast evaluation framework to simulate online inference, maintaining an 

inference latency of less than 500 milliseconds per forecast. We will benchmark the ensemble’s 

performance against specific targets (MAPE ≤ 5%, RMSE reduction ≥ 20%, R² ≥ 0.95) and evaluate 

model interpretability using SHAP values. Additionally, we will monitor the ensemble's robustness to 

sudden demand shifts. 

2. Literature Review 
 

2.1 Related Works 

 

A substantial body of research has explored machine learning approaches for short-term load forecasting 

in power systems. Early applications focused on classical statistical models; Hippert et al. (2001) 

provided a comprehensive review of neural network methods for load prediction, demonstrating their 

superiority over linear regressions under nonlinear demand, patterns [9]. Building on this foundation, 

Hong and Fan (2016) compared hundreds of forecasting techniques, including ARIMA, exponential 

smoothing, and feed-forward neural networks across multiple utility datasets, highlighting the importance 

of model selection and feature engineering for improving forecast accuracy [8]. In recent years, tree-based 

ensemble methods have gained prominence for their robustness and interpretability. Hossain et al. (2024) 

evaluated Random Forest and XGBoost models on regional US grid loads, reporting RMSE reductions of 

up to 15 % compared to ARIMA baselines [10]. Complementing these findings, Gazi et al. (2025) applied 

Light to predict low-carbon technology trade impacts, illustrating that gradient boosting algorithms can 

effectively capture exogenous influences such as policy shifts and market dynamics when supplied with 

appropriate features [8]. 

Deep learning architectures targeting temporal dependencies have shown even greater improvements. 

Hossain, S. et al. (2025) benchmarked LSTM, Bi-LSTM, and attention-enhanced RNNs, achieving sub-5 

% MAPE on utility-scale consumption data by leveraging sequence-to-sequence learning frameworks 
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[12]. Shovon et al. (2025) further demonstrated that hybrid CNN-LSTM models, which extract local load 

patterns via convolutional filters before temporal encoding, deliver enhanced robustness to noisy or 

missing inputs in real-time settings [18]. Recent efforts have also applied similar hybrid architectures for 

fault detection in critical infrastructure, such as gas turbines, where predictive maintenance benefits from 

deep model interpretability and high temporal precision (Amjad et al., 2025) [3]. The integration of 

weather and calendar variables has also been recognized as critical. Anonna et al. (2023) fused NOAA 

meteorological data with historical load series, improving forecast skill by 10 % across diverse climate 

zones [4]. Barua et al. (2025) extended feature engineering to include rolling-window statistics, seasonal 

decompositions, and temperature–load interaction terms, showing that these enriched features 

significantly reduce forecast error during extreme weather events [5]. 

Ensemble and hybrid frameworks have begun to address the complementary strengths of different model 

classes. Chouksey et al. (2025) implemented a stacking ensemble combining XGBoost, MLP, and LSTM 

learners, yielding a 20 % RMSE reduction over single-model pipelines [6]. Similarly, Reza et al. (2025) 

demonstrated that weighted averaging of tree-based and deep models produces more stable forecasts 

under sudden demand shifts, essential for real-time dispatch decisions [16]. Complementary to such 

ensemble strategies, researchers have also explored domain-specific optimizations; for example, Alam et 

al. (2025) proposed a machine learning-based streetlight control system for smart cities, emphasizing 

energy savings through adaptive forecasting and decision-making [2]. Furthermore, Ahmed et al. (2025) 

highlighted the applicability of predictive modeling for institutional energy loads, showing how hospital 

consumption forecasts can be significantly improved using tailored features and supervised learning 

pipelines. 

Deb et al. (2023) introduced graph neural networks to explicitly model spatial dependencies among 

distribution nodes, achieving up to a 12 % error reduction over conventional LSTMs [7]. Zhang et al. 

(2024) applied transformer-based architectures for probabilistic load forecasting, demonstrating superior 

uncertainty quantification and sharper prediction intervals compared to RNN models [21]. Wei et al. 

(2023) investigated federated learning for decentralized short-term load forecasting, enabling privacy-

preserving collaborative model updates across multiple utilities without raw data exchange [20]. Liu et al. 

(2023) proposed an online transfer learning framework that adapts to concept drift in consumption 

behaviors, yielding robust performance during demand regime shifts [15]. Despite these advancements, 

most studies evaluate models in offline settings with static train–test splits. Few address online inference 

latency, adaptive retraining, or interpretability for operational deployment. This research seeks to fill these 

gaps by developing an end-to-end, low-latency forecasting pipeline that integrates diverse ML models, 

advanced feature preprocessing, and explainability methods to meet the stringent requirements of US 

smart grid operations. 

2.2 Gaps and Challenges 

 

Despite the promising advances in ML-driven load forecasting, several critical gaps and challenges 

impede the deployment of these models in real-world smart grid operations. First, the scarcity of high-

quality, labeled event data, such as annotated rapid ramp events or unplanned outages, limits the ability of 

supervised models to generalize under abnormal conditions. Hossain et al. (2024) noted that training 
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datasets often lack sufficient examples of extreme demand spikes, leading to degraded performance when 

such events occur in live systems [10]. This data sparsity is exacerbated by concept drift: as consumption 

patterns evolve with emerging technologies (e.g., electric vehicles, distributed storage), models trained on 

historical data become less accurate over time, requiring adaptive retraining strategies. 

Second, the interpretability of advanced deep learning architectures remains an open issue. While LSTM-

based and attention-enhanced models capture complex temporal dependencies, they often function as 

“black boxes,” making it difficult for grid operators and regulators to trust or act on their predictions. 

Hossain, S. et al. (2025) emphasized that without transparent feature attribution, such as SHAP or 

attention visualizations, stakeholders may be reluctant to rely on these tools for mission-critical decisions 

[12]. Third, class imbalance presents a significant technical hurdle. Extreme load events, though 

impactful, constitute a small fraction of overall data, biasing models toward average conditions. Shovon 

et al. (2025) highlighted that techniques like synthetic oversampling (e.g., SMOTE) must be applied 

cautiously to avoid introducing artificial correlations that do not reflect physical system behavior [18]. 

Moreover, imbalanced datasets can magnify false negatives during peak periods, undermining grid 

reliability. 

Fourth, real-time inference latency and computational efficiency are paramount for operational 

deployment. Complex ensemble or hybrid models often require substantial processing time and resources, 

potentially exceeding the sub-second decision windows mandated by grid control centers. Chouksey et al. 

(2025) demonstrated that many existing frameworks fail to meet these low-latency requirements, 

necessitating model compression or edge deployment strategies [6]. Finally, the integration of multimodal 

data sources, such as high-resolution weather forecasts, real-time distributed generation outputs, and 

consumer behavior signals, remains underexplored. Barua et al. (2025) showed that combining rolling-

window load features with external meteorological and market data can improve forecast robustness 

during extreme events, yet unified pipelines for heterogeneous data ingestion and fusion are still lacking 

[5].  

3. Methodology 
3.1 Data Collection and Preprocessing 

 

Data Sources 

This study utilizes a diverse combination of publicly accessible and proprietary datasets to support the 

development and evaluation of real-time energy load forecasting models within the United States smart 

grid ecosystem. The core source of historical and real-time electricity demand data is the U.S. Energy 

Information Administration (EIA), which provides high-resolution (5-minute interval) load measurements 

across various balancing authorities and regional transmission organizations from January 2015 to 

December 2024. Complementary weather data are sourced from the National Oceanic and Atmospheric 

Administration’s (NOAA) Integrated Surface Database (ISD), offering hourly meteorological readings, 

including temperature, humidity, wind speed, and solar irradiance, from stations proximate to major 

substations and demand centers. 



Pages: 1-19  

         Volume-II, Issue-II (2025) 

_____________________________________________________________________________________

  

       Page | 7                                                                                          Journal of Data & Digital Innovation (JDDI) 
 

To incorporate temporal influences on demand, a comprehensive calendar dataset is constructed, detailing 

U.S. federal and state holidays, daylight-saving time transitions, and high-attendance public events, based 

on data from the U.S. Office of Management and Budget (OMB) and local government event portals. In 

addition, the study incorporates distributed energy resource (DER) generation profiles, including solar 

and wind power outputs, aggregated from interconnection queues and regional transmission operator 

(RTO) dashboards at a 15-minute frequency, enabling better representation of renewable variability in the 

load models. Operational metadata such as forecast lead times, data latency indicators, and measurement 

quality flags are also collected from provider APIs to support model performance evaluation and 

monitoring. 

Data Preprocessing 

Robust data preprocessing is essential to ensure the accuracy, consistency, and performance of the energy 

load forecasting models developed in this study. The raw electricity demand and weather datasets are first 

subjected to data cleaning operations to remove inconsistencies such as missing values, incorrect 

timestamps, negative load entries, and duplicate records. For load data, missing values due to sensor 

errors or transmission delays are imputed using forward fill and time-based interpolation, while weather 

data gaps are addressed through linear and spline interpolation based on adjacent temporal readings.  

To handle outliers that could distort model training, statistical techniques such as z-score normalization 

and interquartile range (IQR) filtering are applied to key variables like temperature, humidity, and load. 

Time-series alignment is performed to synchronize all datasets at a uniform 5-minute resolution, with 

appropriate aggregation or interpolation applied where necessary. Calendar variables such as holidays, 

weekends, and peak hours are encoded using binary flags to capture temporal effects, while cyclical 

features like hour of the day and day of the week are transformed using sine and cosine encoding to 

preserve periodicity. Feature engineering is performed to enhance the predictive quality of the inputs. 

Rolling statistics such as moving averages, maximum and minimum demand over sliding windows (1-

hour, 3-hour, 24-hour), lag features (e.g., previous hour/day load), and weather volatility indicators are 

generated. Distributed energy resource (DER) data, such as wind and solar generation, are also processed 

to include rolling generation profiles and capacity factors. 

All numerical features are normalized using Min-Max scaling to bring them within a [0, 1] range, 

ensuring uniformity and aiding neural network convergence. Categorical attributes, such as region codes 

or balancing authority identifiers, are encoded using one-hot encoding. For time-series models like LSTM 

and GRU, sequences are structured with sliding windows, and care is taken to maintain temporal order 

during dataset partitioning. Datasets are split into training, validation, and test sets using an 80-10-10 

ratio. For time-series forecasting, chronological ordering is strictly preserved to prevent data leakage. 

TimeSeriesSplit from scikit-learn is used for cross-validation to ensure model evaluation reflects realistic 

deployment conditions.  
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Fig. 1 Outlier and rolling-mean analysis of electricity load  

 

3.2 Exploratory Data Analysis 

 

The time series plot illustrates fluctuations in electricity load over a week, with data recorded every five 

minutes. It reveals a distinct diurnal pattern, where load peaks during daytime working hours and declines 

at night, aligning with typical human activity cycles. Irregularities and minor spikes within the curve 

suggest anomalies such as unexpected usage surges or potential equipment malfunctions. The cyclical 

nature of the data underscores the importance of incorporating time-based features like hour or day of the 

week into predictive models. However, the recurring daily pattern also hints at stationarity issues, 

necessitating transformations such as differencing or seasonal decomposition to improve forecasting 

accuracy.   
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Fig. 2 Electricity load over time analysis 

 

The boxplot analyzing load distribution by hour highlights varying electricity demand throughout the day. 

From 1 AM to 6 AM, median load remains low with minimal variability, reflecting stable overnight 

usage. Between 7 AM and 8 PM, both median load and variability rise significantly, peaking in the 

afternoon with wider spreads, indicative of diverse appliance use or behavioral shifts. Outliers, visible as 

points beyond the whiskers, may stem from sudden demand spikes, measurement errors, or weather-

driven events like heatwaves. These findings reinforce the value of encoding hour-of-day as a predictive 

feature and suggest stratified modeling approaches for high-variance peak periods.   

 

Fig. 3 Analysis of electricity load distribution by hour of day 

A correlation heatmap examining relationships between load, temperature, humidity, and peak flags 

reveals key associations. Load exhibits a moderate positive correlation with temperature (0.55–0.65), 

likely due to cooling systems, while humidity shows negligible direct impact. The strong correlation 

between load and the is peak flag is expected, as peak periods are defined by high load values. 

Temperature and humidity display weak-to-moderate interdependence, raising potential multicollinearity 

concerns if both are used as model inputs. This underscores temperature’s utility as a primary feature and 

suggests dimensionality reduction techniques if multicollinearity persists.   



Pages: 1-19  

         Volume-II, Issue-II (2025) 

_____________________________________________________________________________________

  

       Page | 10                                                                                          Journal of Data & Digital Innovation (JDDI) 
 

 

Fig. 4  Correlation heatmap of key dataset features 

 

The scatterplot of load versus temperature, colored by peak status, demonstrates a clear upward trend: 

higher temperatures correlate with increased electricity demand. Beyond a threshold (e.g., 30°C), nearly 

all observations are flagged as peak, highlighting temperature as a critical driver of high-load events. Two 

clusters emerge, low temperature/low load (night/morning) and high temperature/high load 

(afternoon/evening), emphasizing the nonlinear relationship. This supports models like decision trees or 

logistic regression that can capture threshold effects for peak prediction.   

 

 

 

Fig 5. Electricity load vs temperature analysis 
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The 'Electricity Load Distribution by Hour of the Day' plot reveals a pronounced diurnal pattern in 

electricity consumption. During nighttime hours (approximately 12 AM to 6 AM, hours 0–6), the load 

distribution is characterized by lower median values and a narrow interquartile range (IQR), indicating 

stable, minimal usage typical of sleeping hours. From 7 AM onward (hours 7–23), both the median load 

and variability increase significantly, reflecting heightened demand during daytime and evening activities. 

Peak hours (e.g., midday to early evening, hours 12–18) show the widest IQRs and highest medians, 

suggesting substantial fluctuations in usage due to factors like appliance operation, workplace activity, or 

cooling/heating needs. Outliers, visible as isolated points beyond the whiskers of the boxplots, may 

correspond to irregular events such as sudden demand surges, equipment malfunctions, or extreme 

weather conditions (e.g., heatwaves prompting abnormal air conditioning use). 

 

 

Fig. 6 Electricity Load Distribution by Hour of the Day 

 

3.3 Model Development 

 

The model development phase begins with establishing robust baselines and tree-based learners to capture 

both linear and nonlinear relationships in the load data. A classical ARIMA model is first configured using 

automated order selection (via AIC minimization) to serve as a benchmark for short-term forecasting. In 

parallel, a Multiple Linear Regression model is trained on lagged load features and calendar indicators to 

assess the predictive power of simple parametric approaches. Building on these baselines, ensemble tree 

methods, Random Forest, XGBoost, and LightGBM, are implemented to exploit complex interactions 

among engineered features. Each tree-based model undergoes hyperparameter tuning (e.g., number of 

estimators, maximum depth, learning rate) through grid search with time-series cross-validation, and 

feature importances are recorded to identify the most influential predictors. 
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To better capture temporal dependencies and nonlinear dynamics, deep learning architectures are 

developed next. A fully connected Multilayer Perceptron (MLP) serves as a precursor to recurrent 

frameworks, ingesting static windowed features (e.g., t–1, t–24, rolling means) to predict one-step-ahead 

load. Subsequently, Long Short-Term Memory (LSTM) networks are configured with sequence lengths of 

up to 24 intervals, dropout regularization, and early stopping to prevent overfitting. A Bidirectional LSTM 

(Bi-LSTM) variant is explored to leverage both past and future context within training sequences. 

Attention mechanisms are then incorporated into the LSTM architecture to dynamically weight historical 

observations, improving responsiveness to sudden load shifts. All recurrent models are trained using the 

Adam optimizer with learning-rate scheduling and monitored via rolling validation loss. 

Finally, hybrid and ensemble frameworks are constructed to combine the strengths of individual learners. 

A CNN-LSTM model applies one-dimensional convolutional filters to raw load sequences for local 

pattern extraction before temporal encoding by an LSTM layer, enhancing noise robustness. A stacked 

ensemble is built by blending the top-performing tree-based and deep models: first-level predictions from 

XGBoost, LSTM, and CNN-LSTM are fed into a meta-learner (a Ridge regression) to generate final 

forecasts. Additionally, a weighted averaging ensemble is tested, with weights optimized to minimize 

validation MAPE. Throughout development, each model’s inference time is measured to ensure that real-

time deployment constraints (sub-second latency) are met, and interpretability is assessed using SHAP 

values for tree models and attention weight visualizations for recurrent networks. 

4. Results and Discussion 
 

4.1 Model Training and Evaluation Results 

The training and evaluation pipeline was designed to ensure that each model not only achieved high 

accuracy but also generalized well to unseen future data and adhered to real-time deployment constraints. 

We chronologically partitioned the dataset into 70 % for training, 15 % for validation, and 15 % for 

testing, thereby preserving temporal order and preventing information leakage. Hyperparameter tuning for 

the tree-based learners, Random Forest, XGBoost, and LightGBM, was carried out using a rolling-

window cross-validation strategy, which mimics operational forecasting by successively shifting the 

training and validation windows forward in time. For each candidate configuration, we recorded 

validation RMSE and selected the parameter set that minimized error while avoiding over-complexity. 

For Random Forest, tuning 150 trees with a maximum depth of 10 yielded a validation MAE of 148.7 

MW and RMSE of 195.3 MW, corresponding to a MAPE of 7.5 % and R² = 0.88. Feature importance 

analysis revealed that lag-1 load, temperature, and 24-hour rolling mean were the top predictors, 

reflecting the strong influence of recent past consumption and weather on current demand. XGBoost 

further reduced error (MAE = 142.1 MW, RMSE = 187.2 MW, MAPE = 7.0 %, R² = 0.90) by learning 

more nuanced interactions through gradient boosting; the optimal learning rate was 0.1 with 200 boosting 

rounds. LightGBM matched this performance (MAE = 140.8 MW, RMSE = 185.9 MW, MAPE = 6.9 %, 

R² = 0.91) while requiring less training time, making it attractive for rapid retraining in live settings. 

Transitioning to neural networks, the MLP with two hidden layers of 128 and 64 units trained on fixed-

window features (lags, rolling statistics, calendar flags) converged in about 50 epochs, achieving MAE = 
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132.5 MW and MAPE = 6.2 % on the validation set. Its performance underscored the utility of nonlinear 

transformations but also highlighted limitations in capturing temporal dependencies beyond the window 

size. 

The LSTM model, configured with 64 units and a 24-interval sequence length, brought a substantial 

improvement (MAE = 119.3 MW, MAPE = 5.5 %, R² = 0.94) by explicitly modeling the sequential nature 

of load data. Regularization via 20 % dropout and early stopping (10‐epoch patience) prevented 

overfitting, as evidenced by parallel training and validation loss curves. The Bi-LSTM variant, which 

processes sequences in both forward and backward directions, yielded further gains (MAE = 115.0 MW, 

MAPE = 5.3 %, R² = 0.945) by capturing more context. Incorporating an attention mechanism into the 

LSTM allowed the model to weigh recent high-impact observations more heavily, reducing MAE to 110.5 

MW (MAPE = 4.9 %, R² = 0.948). 

To combine local pattern detection with temporal modeling, we developed a CNN-LSTM hybrid. A single 

1D convolutional layer (kernel size = 3) extracted short-term motifs from raw load sequences before 

passing them to an LSTM layer. This architecture delivered MAE = 112.0 MW and MAPE = 5.1 %, 

demonstrating robustness to noisy inputs. Finally, we constructed two ensemble frameworks: a stacking 

ensemble that fed first-level predictions from XGBoost, LSTM, and CNN-LSTM into a Ridge regression 

meta-learner and a weighted-average ensemble with weights optimized to minimize validation MAPE. 

The stacking approach achieved the best overall performance (MAE = 100.5 MW, MAPE = 4.3 %, R² = 

0.96), while the weighted average was close behind (MAE = 102.2 MW, MAPE = 4.4 %, R² = 0.958). 

Both ensembles maintained inference latency under 500 ms per forecast, meeting real-time requirements. 

For context, the ARIMA baseline (with orders selected via AIC) recorded MAE = 235.4 MW and MAPE 

= 12.8 % (R² = 0.76), highlighting the substantial gains from data-driven and nonlinear methods. Multiple 

Linear Regression also underperformed relative to ML techniques (MAE = 180.7 MW, MAPE = 9.5 %, 

R² = 0.82), confirming the need for richer feature sets and complex learners. 
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Fig. 7 Model evaluation results 

 

The training and validation curves for the LSTM model reveal a well-behaved learning process with 

consistent convergence and minimal overfitting. Initially, both training and validation loss (MSE) decline 

rapidly as the model captures broad temporal patterns in the load data. After roughly 20 epochs, the rate 

of loss reduction tapers, indicating the model is fine-tuning its weights to minimize residual errors on 

subtler fluctuations. Importantly, the validation loss remains closely aligned with the training loss 

throughout, suggesting that the dropout regularization and early stopping mechanisms effectively prevent 

overfitting, even as the model grows more complex in later epochs. 
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Fig. 8 Training and validation loss over epochs for the LTSM model 

 

Similarly, the MAPE curves show a steady decrease in percentage error for both training and validation 

sets, dropping from around 6.5% to approximately 5.5% over 50 epochs. The parallel decline of training 

and validation MAPE underscores that improvements in predictive accuracy are generalizable rather than 

confined to the training data. Occasional minor upticks in validation metrics coincide with the model 

encountering more challenging batches (e.g., sudden load spikes), but these are quickly corrected in 

subsequent epochs. Overall, the learning curves confirm that the LSTM model reliably internalizes both 

diurnal cycles and irregular demand variations without sacrificing generalization, aligning with its strong 

performance metrics in the evaluation phase. 

 

 

Fig. 9 Training and validation loss over epochs for the LTSM model 

 

4.2 Discussion and Future Work 

The results of our comparative evaluation demonstrate that deep sequential and hybrid models markedly 

outperform classical and tree-based approaches for short-term load forecasting in US smart grids. 

Specifically, the attention-enhanced LSTM and CNN-LSTM hybrids achieved MAPE values below 5 % 

and R2R^2R2 scores above 0.94, substantially improving on the ARIMA baseline’s 12.8 % MAPE and 

0.76 R2R^2R2 (Hossain et al., 2024; Hossain, S. et al., 2025) [10][12]. These findings align with Barua et 

al. (2025), who reported that hybrid architectures more effectively capture both local and temporal 

patterns during volatile demand periods [5]. The stacking ensemble further aggregated the strengths of 

tree-based and deep models to achieve a MAPE of 4.3 % and R2R^2R2 of 0.96, illustrating the benefit of 

combining diverse learners (Chouksey et al., 2025) [6]. Complementing these results, Smith et al. (2025) 

showed that transformer-based forecasting models can leverage self-attention over long historical 

horizons to reduce error rates by an additional 8 % compared to conventional LSTM approaches [19]. 
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A salient insight is the trade-off between predictive accuracy and interpretability. While deep models 

deliver superior performance, their “black-box” nature complicates operational deployment where 

transparency is required for regulatory compliance and grid operator trust. Recent work suggests 

integrating explainable AI techniques, such as SHAP value analysis for tree models and attention-weight 

visualization for recurrent networks, to elucidate feature contributions (Gazi et al., 2025) [8]. Lee et al. 

(2024) proposed a reinforcement learning–based surrogate framework that distills complex sequence 

models into simpler policy networks, achieving near-original accuracy with enhanced interpretability 

[14]. Future work should explore hybrid frameworks that embed rule-based logic within deep 

architectures, offering both interpretability and high accuracy for mission-critical grid management. 

Another key challenge is maintaining model relevance in the face of concept drift induced by evolving 

consumption behaviors, renewable integration, and emerging prosumer dynamics. Although our pipeline 

includes periodic retraining, more sophisticated online learning and transfer learning strategies, 

potentially within federated learning architectures—could enable decentralized model updates across 

multiple utilities without sharing raw data (Shovon et al., 2025) [18]. Investigating lightweight model-

compression techniques and edge-deployment on substation gateways will also be crucial for meeting 

stringent latency requirements in frequency regulation markets (Reza et al., 2025) [16]. From a feature 

engineering perspective, incorporating higher-resolution DER outputs, real-time pricing signals, and 

consumer-level meter data could further enhance forecast granularity. Kumar et al. (2025) applied graph 

neural networks to capture spatiotemporal correlations between grid nodes, improving adaptation to 

network topology changes and reducing drift-induced error spikes by 12 % [13]. Future research should 

evaluate multi-modal data fusion pipelines that seamlessly integrate these heterogeneous sources (Anonna 

et al., 2023) [4]. Moreover, Rivera et al. (2025) introduced Bayesian LSTM ensembles for probabilistic 

forecasting, offering calibrated uncertainty bounds alongside point predictions, which is vital for risk-

aware grid operations [17]. Fairness and robustness considerations, such as ensuring equitable 

performance across service territories and resilience to adversarial data perturbations, remain unexplored. 

Adopting uncertainty quantification methods and adversarial training could bolster confidence in model 

predictions under stressed grid conditions. 

5. Conclusion 
 

This study highlights the significant benefits of using machine learning for real-time short-term energy 

load forecasting in U.S. smart grids. By evaluating a variety of models, including classical ARIMA, linear 

regression, tree-based ensembles (such as Random Forest, XGBoost, and LightGBM) and advanced deep 

learning architectures (including Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), Bi-

directional LSTM, attention-enhanced LSTM, and CNN-LSTM, )we found that deep sequential and 

hybrid models consistently outperform traditional methods. Specifically, we reduced the Mean Absolute 

Percentage Error (MAPE) from 12.8% (ARIMA) to as low as 4.3% (stacking ensemble) and increased the 

coefficient of determination ($R^2$) from 0.76 to 0.96. The stacking ensemble, which combines 

predictions from XGBoost, LSTM, and CNN-LSTM, achieved the highest overall accuracy while 

maintaining sub-second inference times, demonstrating the viability of deploying these models in 
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operational control centers.  A key contribution of our work is the comprehensive preprocessing and 

feature-engineering framework, which includes lagged load, rolling statistics, weather variables, and 

calendar indicators. This framework supports robust model performance across various demand scenarios. 

Our exploratory data analysis (EDA) and correlation studies underscored the crucial role of temperature 

and daily cycles, informing the development of both engineered and learned representations within hybrid 

models. We also tackled challenges related to concept drift and model interpretability by employing 

techniques such as early stopping, dropout, SHAP-based feature attribution for tree models, and attention-

weight visualization for LSTMs. Despite these advancements, real-world implementation requires further 

research on adaptive learning strategies, edge deployment for low-latency inference, and fairness-aware 

methods to ensure equitable performance across different service areas. Integrating high-resolution 

outputs from distributed energy resources (DERs), real-time pricing signals, and consumer-level meter 

data can enhance the granularity of our models. Looking ahead, exploring federated learning for 

decentralized model updates and embedding rule-based logic within deep models will be essential for 

regulatory compliance and grid resilience. By combining data-driven innovation with operational 

requirements, this research lays the groundwork for smarter, more efficient, and reliable energy 

management in the next generation of electricity grids. 
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